随机相互作用系统的动力学和极值。

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Martin Girard
{"title":"随机相互作用系统的动力学和极值。","authors":"Martin Girard","doi":"10.1088/1478-3975/aca9b2","DOIUrl":null,"url":null,"abstract":"<p><p>Biological environments such as the cytoplasm are comprised of many different molecules, which makes explicit modeling intractable. In the spirit of Wigner, one may be tempted to assume interactions to derive from a random distribution. Via this approximation, the system can be efficiently treated in the mean-field, and general statements about expected behavior of such systems can be made. Here, I study systems of particles interacting via random potentials, outside of mean-field approximations. These systems exhibit a phase transition temperature, under which part of the components precipitate. The nature of this transition appears to be non-universal, and to depend intimately on the underlying distribution of interactions. Above the phase transition temperature, the system can be efficiently treated using a Bethe approximation, which shows a dependence on extreme value statistics. Relaxation timescales of this system tend to be slow, but can be made arbitrarily fast by increasing the number of neighbors of each particle.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On kinetics and extreme values in systems with random interactions.\",\"authors\":\"Martin Girard\",\"doi\":\"10.1088/1478-3975/aca9b2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biological environments such as the cytoplasm are comprised of many different molecules, which makes explicit modeling intractable. In the spirit of Wigner, one may be tempted to assume interactions to derive from a random distribution. Via this approximation, the system can be efficiently treated in the mean-field, and general statements about expected behavior of such systems can be made. Here, I study systems of particles interacting via random potentials, outside of mean-field approximations. These systems exhibit a phase transition temperature, under which part of the components precipitate. The nature of this transition appears to be non-universal, and to depend intimately on the underlying distribution of interactions. Above the phase transition temperature, the system can be efficiently treated using a Bethe approximation, which shows a dependence on extreme value statistics. Relaxation timescales of this system tend to be slow, but can be made arbitrarily fast by increasing the number of neighbors of each particle.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/aca9b2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/aca9b2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

生物环境如细胞质是由许多不同的分子组成的,这使得明确的建模变得困难。根据维格纳的精神,人们可能会倾向于假设相互作用来自随机分布。通过这种近似,可以有效地在平均场中处理系统,并可以对此类系统的预期行为作出一般陈述。在这里,我研究通过随机势相互作用的粒子系统,在平均场近似之外。这些体系表现出相变温度,在此温度下,部分组分析出。这种转变的性质似乎是不普遍的,并且密切依赖于相互作用的潜在分布。在相变温度以上,可以使用贝特近似有效地处理系统,该近似显示出对极值统计量的依赖。该系统的弛豫时标往往是缓慢的,但可以通过增加每个粒子的邻居数量来任意地变快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On kinetics and extreme values in systems with random interactions.

Biological environments such as the cytoplasm are comprised of many different molecules, which makes explicit modeling intractable. In the spirit of Wigner, one may be tempted to assume interactions to derive from a random distribution. Via this approximation, the system can be efficiently treated in the mean-field, and general statements about expected behavior of such systems can be made. Here, I study systems of particles interacting via random potentials, outside of mean-field approximations. These systems exhibit a phase transition temperature, under which part of the components precipitate. The nature of this transition appears to be non-universal, and to depend intimately on the underlying distribution of interactions. Above the phase transition temperature, the system can be efficiently treated using a Bethe approximation, which shows a dependence on extreme value statistics. Relaxation timescales of this system tend to be slow, but can be made arbitrarily fast by increasing the number of neighbors of each particle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信