{"title":"新的奇数恒等式与Zeta函数的非平凡零","authors":"Shaimaa Said Soltan","doi":"10.5539/jmr.v15n2p74","DOIUrl":null,"url":null,"abstract":"This paper is going to introduce a new identity unit circle function for complex plane specific for odd numbers. \n \nSecond, we are going to show some properties of these new unit Identity function. \n \nThird, use this new unit Identity function to study the distribution of odd roots for sin term in zeta function but using the new identity function not Euler Identity to explain Riemann conjunction about the critical strip line and the none-trivial zeros along Re(S) = 0.5. \n \nAlso, In an Introductory Analysis for the geometric functions Sin and Cos, we will visualize the inverse of geometric function Sin. \n \nRiemann's functional equation \n \n \n \n \n \nThen Zeta function will be zero \n \n \n At is Zero for any complex number S. \n If exponential term is zero also when S = S + 0.5 where S is any complex number. \n","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Odd Numbers Identity and the None-trivial Zeros of Zeta Function\",\"authors\":\"Shaimaa Said Soltan\",\"doi\":\"10.5539/jmr.v15n2p74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is going to introduce a new identity unit circle function for complex plane specific for odd numbers. \\n \\nSecond, we are going to show some properties of these new unit Identity function. \\n \\nThird, use this new unit Identity function to study the distribution of odd roots for sin term in zeta function but using the new identity function not Euler Identity to explain Riemann conjunction about the critical strip line and the none-trivial zeros along Re(S) = 0.5. \\n \\nAlso, In an Introductory Analysis for the geometric functions Sin and Cos, we will visualize the inverse of geometric function Sin. \\n \\nRiemann's functional equation \\n \\n \\n \\n \\n \\nThen Zeta function will be zero \\n \\n \\n At is Zero for any complex number S. \\n If exponential term is zero also when S = S + 0.5 where S is any complex number. \\n\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n2p74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n2p74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种新的奇异复平面单位圆函数。其次,我们将展示这些新的单位恒等函数的一些性质。第三,利用这个新的单位恒等式函数来研究zeta函数中sin项的奇根分布,但使用新的恒等式函数而不是欧拉恒等式来解释Re(S) = 0.5的临界条形线和非平凡零点的Riemann合取。此外,在几何函数Sin和Cos的入门分析中,我们将可视化几何函数Sin的反函数。黎曼泛函方程则ζ函数为零,对于任何复数S都为零,如果指数项为零,当S = S + 0.5时S是任何复数。
New Odd Numbers Identity and the None-trivial Zeros of Zeta Function
This paper is going to introduce a new identity unit circle function for complex plane specific for odd numbers.
Second, we are going to show some properties of these new unit Identity function.
Third, use this new unit Identity function to study the distribution of odd roots for sin term in zeta function but using the new identity function not Euler Identity to explain Riemann conjunction about the critical strip line and the none-trivial zeros along Re(S) = 0.5.
Also, In an Introductory Analysis for the geometric functions Sin and Cos, we will visualize the inverse of geometric function Sin.
Riemann's functional equation
Then Zeta function will be zero
At is Zero for any complex number S.
If exponential term is zero also when S = S + 0.5 where S is any complex number.