Nazir Saleheen, Md Azim Ullah, Supriyo Chakraborty, Deniz S Ones, Mani Srivastava, Santosh Kumar
{"title":"腕印:从佩戴在手腕上的加速度计数据中描述用户重新识别的风险。","authors":"Nazir Saleheen, Md Azim Ullah, Supriyo Chakraborty, Deniz S Ones, Mani Srivastava, Santosh Kumar","doi":"10.1145/3460120.3484799","DOIUrl":null,"url":null,"abstract":"<p><p>Public release of wrist-worn motion sensor data is growing. They enable and accelerate research in developing new algorithms to passively track daily activities, resulting in improved health and wellness utilities of smartwatches and activity trackers. But, when combined with sensitive attribute inference attack and linkage attack via re-identification of the same user in multiple datasets, undisclosed sensitive attributes can be revealed to unintended organizations with potentially adverse consequences for unsuspecting data contributing users. To guide both users and data collecting researchers, we characterize the re-identification risks inherent in motion sensor data collected from wrist-worn devices in users' natural environment. For this purpose, we use an open-set formulation, train a deep learning architecture with a new loss function, and apply our model to a new data set consisting of 10 weeks of daily sensor wearing by 353 users. We find that re-identification risk increases with an increase in the activity intensity. On average, such risk is 96% for a user when sharing a full day of sensor data.</p>","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":"2021 ","pages":"2807-2823"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988376/pdf/nihms-1839082.pdf","citationCount":"4","resultStr":"{\"title\":\"WristPrint: Characterizing User Re-identification Risks from Wrist-worn Accelerometry Data.\",\"authors\":\"Nazir Saleheen, Md Azim Ullah, Supriyo Chakraborty, Deniz S Ones, Mani Srivastava, Santosh Kumar\",\"doi\":\"10.1145/3460120.3484799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Public release of wrist-worn motion sensor data is growing. They enable and accelerate research in developing new algorithms to passively track daily activities, resulting in improved health and wellness utilities of smartwatches and activity trackers. But, when combined with sensitive attribute inference attack and linkage attack via re-identification of the same user in multiple datasets, undisclosed sensitive attributes can be revealed to unintended organizations with potentially adverse consequences for unsuspecting data contributing users. To guide both users and data collecting researchers, we characterize the re-identification risks inherent in motion sensor data collected from wrist-worn devices in users' natural environment. For this purpose, we use an open-set formulation, train a deep learning architecture with a new loss function, and apply our model to a new data set consisting of 10 weeks of daily sensor wearing by 353 users. We find that re-identification risk increases with an increase in the activity intensity. On average, such risk is 96% for a user when sharing a full day of sensor data.</p>\",\"PeriodicalId\":72687,\"journal\":{\"name\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"volume\":\"2021 \",\"pages\":\"2807-2823\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9988376/pdf/nihms-1839082.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460120.3484799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460120.3484799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WristPrint: Characterizing User Re-identification Risks from Wrist-worn Accelerometry Data.
Public release of wrist-worn motion sensor data is growing. They enable and accelerate research in developing new algorithms to passively track daily activities, resulting in improved health and wellness utilities of smartwatches and activity trackers. But, when combined with sensitive attribute inference attack and linkage attack via re-identification of the same user in multiple datasets, undisclosed sensitive attributes can be revealed to unintended organizations with potentially adverse consequences for unsuspecting data contributing users. To guide both users and data collecting researchers, we characterize the re-identification risks inherent in motion sensor data collected from wrist-worn devices in users' natural environment. For this purpose, we use an open-set formulation, train a deep learning architecture with a new loss function, and apply our model to a new data set consisting of 10 weeks of daily sensor wearing by 353 users. We find that re-identification risk increases with an increase in the activity intensity. On average, such risk is 96% for a user when sharing a full day of sensor data.