EMVGAN:基于生成对抗网络的情感感知音乐视频共同表征学习

IF 0.4 Q4 TELECOMMUNICATIONS
Yu-Chih Tsai, Tse-Yu Pan, Ting-Yang Kao, Yi-Hsuan Yang, Min-Chun Hu
{"title":"EMVGAN:基于生成对抗网络的情感感知音乐视频共同表征学习","authors":"Yu-Chih Tsai, Tse-Yu Pan, Ting-Yang Kao, Yi-Hsuan Yang, Min-Chun Hu","doi":"10.1145/3512730.3533718","DOIUrl":null,"url":null,"abstract":"Music can enhance our emotional reactions to videos and images, while videos and images can enrich our emotional response to music. Cross-modality retrieval technology can be used to recommend appropriate music for a given video and vice versa. However, the heterogeneity gap caused by the inconsistent distribution between different data modalities complicates learning the common representation space from different modalities. Accordingly, we propose an emotion-aware music-video cross-modal generative adversarial network (EMVGAN) model to build an affective common embedding space to bridge the heterogeneity gap among different data modalities. The evaluation results revealed that the proposed EMVGAN model can learn affective common representations with convincing performance while outperforming other existing models. Furthermore, the satisfactory performance of the proposed network encouraged us to undertake the music-video bidirectional retrieval task.","PeriodicalId":43265,"journal":{"name":"International Journal of Mobile Computing and Multimedia Communications","volume":"18 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EMVGAN: Emotion-Aware Music-Video Common Representation Learning via Generative Adversarial Networks\",\"authors\":\"Yu-Chih Tsai, Tse-Yu Pan, Ting-Yang Kao, Yi-Hsuan Yang, Min-Chun Hu\",\"doi\":\"10.1145/3512730.3533718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Music can enhance our emotional reactions to videos and images, while videos and images can enrich our emotional response to music. Cross-modality retrieval technology can be used to recommend appropriate music for a given video and vice versa. However, the heterogeneity gap caused by the inconsistent distribution between different data modalities complicates learning the common representation space from different modalities. Accordingly, we propose an emotion-aware music-video cross-modal generative adversarial network (EMVGAN) model to build an affective common embedding space to bridge the heterogeneity gap among different data modalities. The evaluation results revealed that the proposed EMVGAN model can learn affective common representations with convincing performance while outperforming other existing models. Furthermore, the satisfactory performance of the proposed network encouraged us to undertake the music-video bidirectional retrieval task.\",\"PeriodicalId\":43265,\"journal\":{\"name\":\"International Journal of Mobile Computing and Multimedia Communications\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mobile Computing and Multimedia Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512730.3533718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Computing and Multimedia Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512730.3533718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

音乐可以增强我们对视频和图像的情感反应,而视频和图像可以丰富我们对音乐的情感反应。跨调式检索技术可用于为给定视频推荐合适的音乐,反之亦然。然而,由于不同数据模态之间分布不一致而导致的异构差距,使得从不同模态中学习公共表示空间变得复杂。因此,我们提出了一种情感感知的音乐视频跨模态生成对抗网络(EMVGAN)模型来构建情感公共嵌入空间,以弥合不同数据模态之间的异质性差距。评估结果表明,EMVGAN模型能够以令人信服的性能学习情感共同表征,并且优于其他现有模型。此外,所提出的网络的令人满意的性能鼓励我们承担音乐视频双向检索任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EMVGAN: Emotion-Aware Music-Video Common Representation Learning via Generative Adversarial Networks
Music can enhance our emotional reactions to videos and images, while videos and images can enrich our emotional response to music. Cross-modality retrieval technology can be used to recommend appropriate music for a given video and vice versa. However, the heterogeneity gap caused by the inconsistent distribution between different data modalities complicates learning the common representation space from different modalities. Accordingly, we propose an emotion-aware music-video cross-modal generative adversarial network (EMVGAN) model to build an affective common embedding space to bridge the heterogeneity gap among different data modalities. The evaluation results revealed that the proposed EMVGAN model can learn affective common representations with convincing performance while outperforming other existing models. Furthermore, the satisfactory performance of the proposed network encouraged us to undertake the music-video bidirectional retrieval task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信