{"title":"分布参数系统广义最优控制问题的一阶方法","authors":"S. Denisov, V. V. Semenov","doi":"10.17721/2706-9699.2020.2.02","DOIUrl":null,"url":null,"abstract":"The problems of optimization of linear distributed systems with generalized control and first-order methods for their solution are considered. The main focus is on proving the convergence of methods. It is assumed that the operator describing the model satisfies a priori estimates in negative norms. For control problems with convex and preconvex admissible sets, the convergence of several first-order algorithms with errors in iterative subproblems is proved.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"22 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FIRST-ORDER METHODS FOR GENERALIZED OPTIMAL CONTROL PROBLEMS FOR SYSTEMS WITH DISTRIBUTED PARAMETERS\",\"authors\":\"S. Denisov, V. V. Semenov\",\"doi\":\"10.17721/2706-9699.2020.2.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problems of optimization of linear distributed systems with generalized control and first-order methods for their solution are considered. The main focus is on proving the convergence of methods. It is assumed that the operator describing the model satisfies a priori estimates in negative norms. For control problems with convex and preconvex admissible sets, the convergence of several first-order algorithms with errors in iterative subproblems is proved.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2020.2.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2020.2.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FIRST-ORDER METHODS FOR GENERALIZED OPTIMAL CONTROL PROBLEMS FOR SYSTEMS WITH DISTRIBUTED PARAMETERS
The problems of optimization of linear distributed systems with generalized control and first-order methods for their solution are considered. The main focus is on proving the convergence of methods. It is assumed that the operator describing the model satisfies a priori estimates in negative norms. For control problems with convex and preconvex admissible sets, the convergence of several first-order algorithms with errors in iterative subproblems is proved.