将II类图分解为两个I类图

Yan Cao, Guangming Jing, Rong Luo, V. Mkrtchyan, Cun-Quan Zhang, Yue Zhao
{"title":"将II类图分解为两个I类图","authors":"Yan Cao, Guangming Jing, Rong Luo, V. Mkrtchyan, Cun-Quan Zhang, Yue Zhao","doi":"10.48550/arXiv.2211.05930","DOIUrl":null,"url":null,"abstract":"Mkrtchyan and Steffen [J. Graph Theory, 70 (4), 473--482, 2012] showed that every class II simple graph can be decomposed into a maximum $\\Delta$-edge-colorable subgraph and a matching. They further conjectured that every graph $G$ with chromatic index $\\Delta(G)+k$ ($k\\geq 1$) can be decomposed into a maximum $\\Delta(G)$-edge-colorable subgraph (not necessarily class I) and a $k$-edge-colorable subgraph. In this paper, we first generalize their result to multigraphs and show that every multigraph $G$ with multiplicity $\\mu$ can be decomposed into a maximum $\\Delta(G)$-edge-colorable subgraph and a subgraph with maximum degree at most $\\mu$. Then we prove that every graph $G$ with chromatic index $\\Delta(G)+k$ can be decomposed into two class I subgraphs $H_1$ and $H_2$ such that $\\Delta(H_1) = \\Delta(G)$ and $\\Delta(H_2) = k$, which is a variation of their conjecture.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"18 1","pages":"113610"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition of class II graphs into two class I graphs\",\"authors\":\"Yan Cao, Guangming Jing, Rong Luo, V. Mkrtchyan, Cun-Quan Zhang, Yue Zhao\",\"doi\":\"10.48550/arXiv.2211.05930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mkrtchyan and Steffen [J. Graph Theory, 70 (4), 473--482, 2012] showed that every class II simple graph can be decomposed into a maximum $\\\\Delta$-edge-colorable subgraph and a matching. They further conjectured that every graph $G$ with chromatic index $\\\\Delta(G)+k$ ($k\\\\geq 1$) can be decomposed into a maximum $\\\\Delta(G)$-edge-colorable subgraph (not necessarily class I) and a $k$-edge-colorable subgraph. In this paper, we first generalize their result to multigraphs and show that every multigraph $G$ with multiplicity $\\\\mu$ can be decomposed into a maximum $\\\\Delta(G)$-edge-colorable subgraph and a subgraph with maximum degree at most $\\\\mu$. Then we prove that every graph $G$ with chromatic index $\\\\Delta(G)+k$ can be decomposed into two class I subgraphs $H_1$ and $H_2$ such that $\\\\Delta(H_1) = \\\\Delta(G)$ and $\\\\Delta(H_2) = k$, which is a variation of their conjecture.\",\"PeriodicalId\":21749,\"journal\":{\"name\":\"SIAM J. Discret. Math.\",\"volume\":\"18 1\",\"pages\":\"113610\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM J. Discret. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.05930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.05930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

[J]。图论,70(4),473—482,2012]证明了每一类简单图都可以分解为一个极大的$\Delta$ -边可着色子图和一个匹配。他们进一步推测,每个具有色指数$\Delta(G)+k$ ($k\geq 1$)的图$G$都可以分解为一个最大的$\Delta(G)$ -边可着色子图(不一定是I类)和一个$k$ -边可着色子图。本文首先将它们的结果推广到多重图上,并证明了具有多重性$\mu$的每一个多重图$G$都可以分解为最大$\Delta(G)$边可着色子图和最大度最多$\mu$的子图。然后证明了每一个具有色指数$\Delta(G)+k$的图$G$都可以分解为两个I类子图$H_1$和$H_2$,使得$\Delta(H_1) = \Delta(G)$和$\Delta(H_2) = k$,这是它们猜想的一个变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition of class II graphs into two class I graphs
Mkrtchyan and Steffen [J. Graph Theory, 70 (4), 473--482, 2012] showed that every class II simple graph can be decomposed into a maximum $\Delta$-edge-colorable subgraph and a matching. They further conjectured that every graph $G$ with chromatic index $\Delta(G)+k$ ($k\geq 1$) can be decomposed into a maximum $\Delta(G)$-edge-colorable subgraph (not necessarily class I) and a $k$-edge-colorable subgraph. In this paper, we first generalize their result to multigraphs and show that every multigraph $G$ with multiplicity $\mu$ can be decomposed into a maximum $\Delta(G)$-edge-colorable subgraph and a subgraph with maximum degree at most $\mu$. Then we prove that every graph $G$ with chromatic index $\Delta(G)+k$ can be decomposed into two class I subgraphs $H_1$ and $H_2$ such that $\Delta(H_1) = \Delta(G)$ and $\Delta(H_2) = k$, which is a variation of their conjecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信