非对称遗传:非孟德尔繁殖策略的多样性和进化

IF 11.2 1区 生物学 Q1 ECOLOGY
L. Ross, Andrew J. Mongue, C. N. Hodson, T. Schwander
{"title":"非对称遗传:非孟德尔繁殖策略的多样性和进化","authors":"L. Ross, Andrew J. Mongue, C. N. Hodson, T. Schwander","doi":"10.1146/annurev-ecolsys-021822-010659","DOIUrl":null,"url":null,"abstract":"The ability to reproduce is the key trait that distinguishes living organisms from inorganic matter, and the strategies used to achieve successful reproduction are almost as diverse as the organisms themselves. In animals, the most widespread form of reproduction involves separate male and female sexes: Each sex produces haploid gametes via meiosis, and two gametes fuse to form a new diploid organism. In some cases, both parents contribute equally to the nuclear and cytoplasmic genomes of their offspring. However, such fully symmetric reproduction of both parents represents the extreme end of a continuum toward complete asymmetry, where offspring inherit their nuclear and cytoplasmic genomes from only one of the two parents. Asymmetries also occur with respect to the fate of maternally and paternally inherited genomes and which sex is affected by non-Mendelian inheritance. In this review, we describe the diversity of animal reproductive systems along different axes with a symmetry–asymmetry continuum and suggest evolutionary routes that may have led to increased levels of asymmetry. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 53 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"41 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Asymmetric Inheritance: The Diversity and Evolution of Non-Mendelian Reproductive Strategies\",\"authors\":\"L. Ross, Andrew J. Mongue, C. N. Hodson, T. Schwander\",\"doi\":\"10.1146/annurev-ecolsys-021822-010659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to reproduce is the key trait that distinguishes living organisms from inorganic matter, and the strategies used to achieve successful reproduction are almost as diverse as the organisms themselves. In animals, the most widespread form of reproduction involves separate male and female sexes: Each sex produces haploid gametes via meiosis, and two gametes fuse to form a new diploid organism. In some cases, both parents contribute equally to the nuclear and cytoplasmic genomes of their offspring. However, such fully symmetric reproduction of both parents represents the extreme end of a continuum toward complete asymmetry, where offspring inherit their nuclear and cytoplasmic genomes from only one of the two parents. Asymmetries also occur with respect to the fate of maternally and paternally inherited genomes and which sex is affected by non-Mendelian inheritance. In this review, we describe the diversity of animal reproductive systems along different axes with a symmetry–asymmetry continuum and suggest evolutionary routes that may have led to increased levels of asymmetry. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 53 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":7988,\"journal\":{\"name\":\"Annual Review of Ecology, Evolution, and Systematics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Ecology, Evolution, and Systematics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-ecolsys-021822-010659\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Ecology, Evolution, and Systematics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-ecolsys-021822-010659","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 4

摘要

繁殖能力是生物区别于无机物的关键特征,而用于成功繁殖的策略几乎和生物本身一样多样化。在动物中,最普遍的繁殖形式是雄性和雌性分开:每一种性别通过减数分裂产生单倍体配子,两个配子融合形成一个新的二倍体有机体。在某些情况下,父母双方对后代的核基因组和细胞质基因组贡献相同。然而,父母双方的这种完全对称的繁殖代表了完全不对称连续体的极端末端,在这种情况下,后代只从父母双方中的一方遗传了他们的细胞核和细胞质基因组。不对称也发生在母系和父系遗传基因组的命运上,以及哪个性别受到非孟德尔遗传的影响。在这篇综述中,我们描述了动物生殖系统沿不同轴的多样性,具有对称-不对称连续体,并提出了可能导致不对称水平增加的进化途径。《生态、进化和分类学年度评论》第53卷的最终在线出版日期预计为2022年11月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric Inheritance: The Diversity and Evolution of Non-Mendelian Reproductive Strategies
The ability to reproduce is the key trait that distinguishes living organisms from inorganic matter, and the strategies used to achieve successful reproduction are almost as diverse as the organisms themselves. In animals, the most widespread form of reproduction involves separate male and female sexes: Each sex produces haploid gametes via meiosis, and two gametes fuse to form a new diploid organism. In some cases, both parents contribute equally to the nuclear and cytoplasmic genomes of their offspring. However, such fully symmetric reproduction of both parents represents the extreme end of a continuum toward complete asymmetry, where offspring inherit their nuclear and cytoplasmic genomes from only one of the two parents. Asymmetries also occur with respect to the fate of maternally and paternally inherited genomes and which sex is affected by non-Mendelian inheritance. In this review, we describe the diversity of animal reproductive systems along different axes with a symmetry–asymmetry continuum and suggest evolutionary routes that may have led to increased levels of asymmetry. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 53 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.90
自引率
1.70%
发文量
21
期刊介绍: The Annual Review of Ecology, Evolution, and Systematics is a scholarly publication that has been in circulation since 1970. It focuses on important advancements in the areas of ecology, evolutionary biology, and systematics, with relevance to all forms of life on Earth. The journal features essay reviews that encompass various topics such as phylogeny, speciation, molecular evolution, behavior, evolutionary physiology, population dynamics, ecosystem processes, and applications in invasion biology, conservation, and environmental management. Recently, the current volume of the journal transitioned from a subscription-based model to open access through the Annual Reviews' Subscribe to Open program. Consequently, all articles published in the current volume are now available under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信