分解空间和后分层空间

Shoji Yokura
{"title":"分解空间和后分层空间","authors":"Shoji Yokura","doi":"10.32513/tbilisi/1593223222","DOIUrl":null,"url":null,"abstract":"In 1920s R. L. Moore introduced \\emph{upper semicontinuous} and \\emph{lower semicontinuous} decompositions in studying decomposition spaces. Upper semicontinuous decompositions were studied very well by himself and later by R.H. Bing in 1950s. In this paper we consider lower semicontinuous decompositions $\\mathcal D$ of a topological space $X$ such that the decomposition spaces $X/\\mathcal D$ are Alexandroff spaces. If the associated proset (preordered set) of the decomposition space $X/\\mathcal D$ is a poset, then the decomposition map $\\pi:X \\to X/\\mathcal D$ is \\emph{a continuous map from the topological space $X$ to the poset $X/\\mathcal D$ with the associated Alexandroff topology}, which is nowadays called \\emph{a poset-stratified space}. As an application, we capture the face poset of a real hyperplane arrangement $\\mathcal A$ of $\\mathbb R^n$ as the associated poset of the decomposition space $\\mathbb R^n/\\mathcal D(\\mathcal A)$ of the decomposition $\\mathcal D(\\mathcal A)$ determined by the arrangement $\\mathcal A$. We also show that for any locally small category $\\mathcal C$ the set $hom_{\\mathcal C}(X,Y)$ of morphisms from $X$ to $Y$ can be considered as a poset-stratified space, and that for any objects $S, T$ (where $S$ plays as a source object and $T$ as a target object) there are a covariant functor $\\frak {st}^S_*: \\mathcal C \\to \\mathcal Strat$ and a contravariant functor $\\frak {st}^*_T$ $\\frak {st}^*_T: \\mathcal C \\to \\mathcal Strat$ from $\\mathcal C$ to the category $\\mathcal Strat$ of poset-stratified spaces. We also make a remark about Yoneda's Lemmas as to poset-stratified space structures of $hom_{\\mathcal C}(X,Y)$.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Decomposition spaces and poset-stratified spaces\",\"authors\":\"Shoji Yokura\",\"doi\":\"10.32513/tbilisi/1593223222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1920s R. L. Moore introduced \\\\emph{upper semicontinuous} and \\\\emph{lower semicontinuous} decompositions in studying decomposition spaces. Upper semicontinuous decompositions were studied very well by himself and later by R.H. Bing in 1950s. In this paper we consider lower semicontinuous decompositions $\\\\mathcal D$ of a topological space $X$ such that the decomposition spaces $X/\\\\mathcal D$ are Alexandroff spaces. If the associated proset (preordered set) of the decomposition space $X/\\\\mathcal D$ is a poset, then the decomposition map $\\\\pi:X \\\\to X/\\\\mathcal D$ is \\\\emph{a continuous map from the topological space $X$ to the poset $X/\\\\mathcal D$ with the associated Alexandroff topology}, which is nowadays called \\\\emph{a poset-stratified space}. As an application, we capture the face poset of a real hyperplane arrangement $\\\\mathcal A$ of $\\\\mathbb R^n$ as the associated poset of the decomposition space $\\\\mathbb R^n/\\\\mathcal D(\\\\mathcal A)$ of the decomposition $\\\\mathcal D(\\\\mathcal A)$ determined by the arrangement $\\\\mathcal A$. We also show that for any locally small category $\\\\mathcal C$ the set $hom_{\\\\mathcal C}(X,Y)$ of morphisms from $X$ to $Y$ can be considered as a poset-stratified space, and that for any objects $S, T$ (where $S$ plays as a source object and $T$ as a target object) there are a covariant functor $\\\\frak {st}^S_*: \\\\mathcal C \\\\to \\\\mathcal Strat$ and a contravariant functor $\\\\frak {st}^*_T$ $\\\\frak {st}^*_T: \\\\mathcal C \\\\to \\\\mathcal Strat$ from $\\\\mathcal C$ to the category $\\\\mathcal Strat$ of poset-stratified spaces. We also make a remark about Yoneda's Lemmas as to poset-stratified space structures of $hom_{\\\\mathcal C}(X,Y)$.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32513/tbilisi/1593223222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tbilisi/1593223222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

20世纪20年代,r·l·摩尔介绍了 \emph{上半连续的} 和 \emph{下半连续的} 研究分解空间中的分解。上半连续分解在他和R.H. Bing的研究中都做得很好。本文考虑下半连续分解 $\mathcal D$ 拓扑空间的 $X$ 使得分解空间 $X/\mathcal D$ 是亚历山德罗夫空间。如果分解空间的关联proset (preordered set) $X/\mathcal D$ 是偏序集,那么分解映射呢 $\pi:X \to X/\mathcal D$ 是 \emph{拓扑空间中的连续映射 $X$ 到前边去 $X/\mathcal D$ 与相关的亚历山德罗夫拓扑},也就是现在所说的 \emph{后分层空间}. 作为一个应用,我们捕获了一个真实超平面排列的面序 $\mathcal A$ 的 $\mathbb R^n$ 作为分解空间的相关偏置集 $\mathbb R^n/\mathcal D(\mathcal A)$ 分解的过程 $\mathcal D(\mathcal A)$ 由安排决定 $\mathcal A$. 我们也证明了对于任何局部小类别 $\mathcal C$ 布景 $hom_{\mathcal C}(X,Y)$ 源自 $X$ 到 $Y$ 可以被认为是一个后分层空间,对于任何物体来说 $S, T$ (哪里 $S$ 作为源对象和 $T$ 作为目标对象)有一个协变函子 $\frak {st}^S_*: \mathcal C \to \mathcal Strat$ 一个逆变函子 $\frak {st}^*_T$ $\frak {st}^*_T: \mathcal C \to \mathcal Strat$ 从 $\mathcal C$ 到这个类别 $\mathcal Strat$ 后分层空间。我们还对Yoneda关于空间结构的后分层引理作了评论 $hom_{\mathcal C}(X,Y)$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition spaces and poset-stratified spaces
In 1920s R. L. Moore introduced \emph{upper semicontinuous} and \emph{lower semicontinuous} decompositions in studying decomposition spaces. Upper semicontinuous decompositions were studied very well by himself and later by R.H. Bing in 1950s. In this paper we consider lower semicontinuous decompositions $\mathcal D$ of a topological space $X$ such that the decomposition spaces $X/\mathcal D$ are Alexandroff spaces. If the associated proset (preordered set) of the decomposition space $X/\mathcal D$ is a poset, then the decomposition map $\pi:X \to X/\mathcal D$ is \emph{a continuous map from the topological space $X$ to the poset $X/\mathcal D$ with the associated Alexandroff topology}, which is nowadays called \emph{a poset-stratified space}. As an application, we capture the face poset of a real hyperplane arrangement $\mathcal A$ of $\mathbb R^n$ as the associated poset of the decomposition space $\mathbb R^n/\mathcal D(\mathcal A)$ of the decomposition $\mathcal D(\mathcal A)$ determined by the arrangement $\mathcal A$. We also show that for any locally small category $\mathcal C$ the set $hom_{\mathcal C}(X,Y)$ of morphisms from $X$ to $Y$ can be considered as a poset-stratified space, and that for any objects $S, T$ (where $S$ plays as a source object and $T$ as a target object) there are a covariant functor $\frak {st}^S_*: \mathcal C \to \mathcal Strat$ and a contravariant functor $\frak {st}^*_T$ $\frak {st}^*_T: \mathcal C \to \mathcal Strat$ from $\mathcal C$ to the category $\mathcal Strat$ of poset-stratified spaces. We also make a remark about Yoneda's Lemmas as to poset-stratified space structures of $hom_{\mathcal C}(X,Y)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信