正交多项式在统计推断中的一些应用

IF 0.9 Q3 MATHEMATICS, APPLIED
Inmaculada Barranco-Chamorro, Christos Grentzelos
{"title":"正交多项式在统计推断中的一些应用","authors":"Inmaculada Barranco-Chamorro,&nbsp;Christos Grentzelos","doi":"10.1002/cmm4.1144","DOIUrl":null,"url":null,"abstract":"<p>Every random variable (rv) <i>X</i> (or random vector) with finite moments generates a set of orthogonal polynomials, which can be used to obtain properties related to the distribution of <i>X</i>. This technique has been used in statistical inference, mainly connected to the exponential family of distributions. In this paper a review of some of its more relevant uses is provided. The first one deals with properties of expansions in terms of orthogonal polynomials for the Uniformly Minimum Variance Unbiased Estimator of a given parametric function, when sampling from a distribution in the Natural Exponential Family of distributions with Quadratic Variance Function. The second one compares two relevant methods, based on expansions in Laguerre polynomials, existing in the literature to approximate the distribution of linear combinations of independent chi-square variables.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1144","citationCount":"1","resultStr":"{\"title\":\"Some uses of orthogonal polynomials in statistical inference\",\"authors\":\"Inmaculada Barranco-Chamorro,&nbsp;Christos Grentzelos\",\"doi\":\"10.1002/cmm4.1144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Every random variable (rv) <i>X</i> (or random vector) with finite moments generates a set of orthogonal polynomials, which can be used to obtain properties related to the distribution of <i>X</i>. This technique has been used in statistical inference, mainly connected to the exponential family of distributions. In this paper a review of some of its more relevant uses is provided. The first one deals with properties of expansions in terms of orthogonal polynomials for the Uniformly Minimum Variance Unbiased Estimator of a given parametric function, when sampling from a distribution in the Natural Exponential Family of distributions with Quadratic Variance Function. The second one compares two relevant methods, based on expansions in Laguerre polynomials, existing in the literature to approximate the distribution of linear combinations of independent chi-square variables.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1144\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

每个具有有限矩的随机变量(rv) X(或随机向量)产生一组正交多项式,这些正交多项式可用于获得与X分布有关的性质。这种技术已用于统计推断,主要与指数族分布有关。本文综述了它的一些更相关的用途。第一部分讨论了从具有二次方差函数的自然指数族分布中抽样时,给定参数函数的一致最小方差无偏估计的正交多项式展开式的性质。第二部分比较了文献中存在的两种相关方法,基于Laguerre多项式的展开式来近似独立卡方变量线性组合的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some uses of orthogonal polynomials in statistical inference

Every random variable (rv) X (or random vector) with finite moments generates a set of orthogonal polynomials, which can be used to obtain properties related to the distribution of X. This technique has been used in statistical inference, mainly connected to the exponential family of distributions. In this paper a review of some of its more relevant uses is provided. The first one deals with properties of expansions in terms of orthogonal polynomials for the Uniformly Minimum Variance Unbiased Estimator of a given parametric function, when sampling from a distribution in the Natural Exponential Family of distributions with Quadratic Variance Function. The second one compares two relevant methods, based on expansions in Laguerre polynomials, existing in the literature to approximate the distribution of linear combinations of independent chi-square variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信