{"title":"一款低功耗单端11位SA-ADC,电源电压为1v,输入电压范围为2v,用于CMOS图像传感器","authors":"Junbo Shim, Min-Kyu Kim, Seongkwan Hong, O. Kwon","doi":"10.1109/APCCAS.2016.7803989","DOIUrl":null,"url":null,"abstract":"We propose a low-power single-ended 11-bit successive approximation analog-to-digital converter (SA-ADC) for CMOS image sensors. The proposed SA-ADC uses a supply voltage of 1 V instead of 2 V for a 2 V input voltage range in order to reduce power consumption. The proposed ADC reduces the conversion time and area by sampling the input signal only twice and converting it to the most significant bit (MSB) and lower 10-bit without any additional analog circuit. A test chip with the proposed SA-ADC was fabricated using a 0.18 μm CMOS process technology. The measurement results show that the total power consumption of the proposed SA-ADC is 9.0 μW. The static and dynamic power consumptions using a 1 V supply voltage are reduced by 54% and 76%, respectively, compared with those using a 2 V supply voltage. In addition, the proposed SA-ADC achieves a short conversion time of 6.5 μs and occupies a small area of 320 μm × 270 μm. The measured DNL and INL are −0.53/+0.57 LSB and −0.91/+0.71 LSB, respectively.","PeriodicalId":6495,"journal":{"name":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"135 1","pages":"410-413"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A low-power single-ended 11-bit SA-ADC with 1 V supply voltage and 2 V input voltage range for CMOS image sensors\",\"authors\":\"Junbo Shim, Min-Kyu Kim, Seongkwan Hong, O. Kwon\",\"doi\":\"10.1109/APCCAS.2016.7803989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a low-power single-ended 11-bit successive approximation analog-to-digital converter (SA-ADC) for CMOS image sensors. The proposed SA-ADC uses a supply voltage of 1 V instead of 2 V for a 2 V input voltage range in order to reduce power consumption. The proposed ADC reduces the conversion time and area by sampling the input signal only twice and converting it to the most significant bit (MSB) and lower 10-bit without any additional analog circuit. A test chip with the proposed SA-ADC was fabricated using a 0.18 μm CMOS process technology. The measurement results show that the total power consumption of the proposed SA-ADC is 9.0 μW. The static and dynamic power consumptions using a 1 V supply voltage are reduced by 54% and 76%, respectively, compared with those using a 2 V supply voltage. In addition, the proposed SA-ADC achieves a short conversion time of 6.5 μs and occupies a small area of 320 μm × 270 μm. The measured DNL and INL are −0.53/+0.57 LSB and −0.91/+0.71 LSB, respectively.\",\"PeriodicalId\":6495,\"journal\":{\"name\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"135 1\",\"pages\":\"410-413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.2016.7803989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2016.7803989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-power single-ended 11-bit SA-ADC with 1 V supply voltage and 2 V input voltage range for CMOS image sensors
We propose a low-power single-ended 11-bit successive approximation analog-to-digital converter (SA-ADC) for CMOS image sensors. The proposed SA-ADC uses a supply voltage of 1 V instead of 2 V for a 2 V input voltage range in order to reduce power consumption. The proposed ADC reduces the conversion time and area by sampling the input signal only twice and converting it to the most significant bit (MSB) and lower 10-bit without any additional analog circuit. A test chip with the proposed SA-ADC was fabricated using a 0.18 μm CMOS process technology. The measurement results show that the total power consumption of the proposed SA-ADC is 9.0 μW. The static and dynamic power consumptions using a 1 V supply voltage are reduced by 54% and 76%, respectively, compared with those using a 2 V supply voltage. In addition, the proposed SA-ADC achieves a short conversion time of 6.5 μs and occupies a small area of 320 μm × 270 μm. The measured DNL and INL are −0.53/+0.57 LSB and −0.91/+0.71 LSB, respectively.