废菠萝叶电解盐水快速制备菠萝叶纤维

Huy N. Q. Phan, Jyh Hoang Leu, K. Tran, V. Nguyen, Trung Tan Nguyen
{"title":"废菠萝叶电解盐水快速制备菠萝叶纤维","authors":"Huy N. Q. Phan, Jyh Hoang Leu, K. Tran, V. Nguyen, Trung Tan Nguyen","doi":"10.3390/textiles3010001","DOIUrl":null,"url":null,"abstract":"Instead of contributing to global warming by the traditional method—burning crop wastes—in this study, discarded pineapple leaves were rapidly turned into multifunctional fibers: pineapple leaf fibers (PALF). In addition, the presence of pure hydrogen during treatment can be a competitive advantage. PALF were extracted by a conventional technique, then immersed into sodium hydroxide 6% before it was treated with an electrolysis system of sodium chloride 3%. The crystallinity index increased 57.4% of treated PALF, and was collected from XRD. Meanwhile, the removal of hemicellulose and lignin in the fiber formation was presented at the absorbance peak of around 1730 cm−1 by FTIR spectrums. Simultaneously, the purity of hydrogen reached 99% and was confirmed by GC analysis. The obtained PALF and hydrogen can be used for further consideration, aiming for a circular economy.","PeriodicalId":94219,"journal":{"name":"Textiles (Basel, Switzerland)","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Fabrication of Pineapple Leaf Fibers from Discarded Leaves by Using Electrolysis of Brine\",\"authors\":\"Huy N. Q. Phan, Jyh Hoang Leu, K. Tran, V. Nguyen, Trung Tan Nguyen\",\"doi\":\"10.3390/textiles3010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instead of contributing to global warming by the traditional method—burning crop wastes—in this study, discarded pineapple leaves were rapidly turned into multifunctional fibers: pineapple leaf fibers (PALF). In addition, the presence of pure hydrogen during treatment can be a competitive advantage. PALF were extracted by a conventional technique, then immersed into sodium hydroxide 6% before it was treated with an electrolysis system of sodium chloride 3%. The crystallinity index increased 57.4% of treated PALF, and was collected from XRD. Meanwhile, the removal of hemicellulose and lignin in the fiber formation was presented at the absorbance peak of around 1730 cm−1 by FTIR spectrums. Simultaneously, the purity of hydrogen reached 99% and was confirmed by GC analysis. The obtained PALF and hydrogen can be used for further consideration, aiming for a circular economy.\",\"PeriodicalId\":94219,\"journal\":{\"name\":\"Textiles (Basel, Switzerland)\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Textiles (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/textiles3010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textiles (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/textiles3010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,废弃的菠萝叶被迅速转化为多功能纤维:菠萝叶纤维(PALF),而不是燃烧作物废料的传统方法导致全球变暖。此外,在处理过程中,纯氢的存在可能是一个竞争优势。采用常规工艺提取PALF,浸泡在6%的氢氧化钠中,然后用3%氯化钠电解系统处理。处理后的PALF结晶度指数提高了57.4%,并通过XRD进行了采集。同时,在1730 cm−1左右的FTIR吸光度峰处,纤维中半纤维素和木质素被去除。同时,氢的纯度达到99%,经气相色谱分析证实。获得的PALF和氢气可以进一步考虑,旨在实现循环经济。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid Fabrication of Pineapple Leaf Fibers from Discarded Leaves by Using Electrolysis of Brine
Instead of contributing to global warming by the traditional method—burning crop wastes—in this study, discarded pineapple leaves were rapidly turned into multifunctional fibers: pineapple leaf fibers (PALF). In addition, the presence of pure hydrogen during treatment can be a competitive advantage. PALF were extracted by a conventional technique, then immersed into sodium hydroxide 6% before it was treated with an electrolysis system of sodium chloride 3%. The crystallinity index increased 57.4% of treated PALF, and was collected from XRD. Meanwhile, the removal of hemicellulose and lignin in the fiber formation was presented at the absorbance peak of around 1730 cm−1 by FTIR spectrums. Simultaneously, the purity of hydrogen reached 99% and was confirmed by GC analysis. The obtained PALF and hydrogen can be used for further consideration, aiming for a circular economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信