通用(Mod-7)语音引导空间

IF 0.7 1区 艺术学 0 MUSIC
Leah Frederick
{"title":"通用(Mod-7)语音引导空间","authors":"Leah Frederick","doi":"10.1215/00222909-7795257","DOIUrl":null,"url":null,"abstract":"This article constructs generic voice-leading spaces by combining geometric approaches to voice leading with diatonic set theory. Unlike the continuous mod-12 spaces developed by Callender, Quinn, and Tymoczko, these mod-7 spaces are fundamentally discrete. The mathematical properties of these spaces derive from the properties of diatonic pitch-class sets and generic pitch spaces developed by Clough and Hook. After presenting the construction of these voice-leading spaces and defining the OPTIC relations in mod-7 space, this article presents the mod-7 OPTIC-, OPTI-, OPT-, and OP-spaces of two- and three-note chords. The final section of the study shows that, although the discrete mod-7 versions of these lattices appear quite different from their continuous mod-12 counterparts, the topological space underlying each of these graphs depends solely on the number of notes in the chords and the particular OPTIC relations applied.","PeriodicalId":45025,"journal":{"name":"JOURNAL OF MUSIC THEORY","volume":"52 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generic (Mod-7) Voice-Leading Spaces\",\"authors\":\"Leah Frederick\",\"doi\":\"10.1215/00222909-7795257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article constructs generic voice-leading spaces by combining geometric approaches to voice leading with diatonic set theory. Unlike the continuous mod-12 spaces developed by Callender, Quinn, and Tymoczko, these mod-7 spaces are fundamentally discrete. The mathematical properties of these spaces derive from the properties of diatonic pitch-class sets and generic pitch spaces developed by Clough and Hook. After presenting the construction of these voice-leading spaces and defining the OPTIC relations in mod-7 space, this article presents the mod-7 OPTIC-, OPTI-, OPT-, and OP-spaces of two- and three-note chords. The final section of the study shows that, although the discrete mod-7 versions of these lattices appear quite different from their continuous mod-12 counterparts, the topological space underlying each of these graphs depends solely on the number of notes in the chords and the particular OPTIC relations applied.\",\"PeriodicalId\":45025,\"journal\":{\"name\":\"JOURNAL OF MUSIC THEORY\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF MUSIC THEORY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1215/00222909-7795257\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MUSIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF MUSIC THEORY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00222909-7795257","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
引用次数: 1

摘要

本文将几何导音方法与全音阶集理论相结合,构建了一般导音空间。与Callender、Quinn和Tymoczko开发的连续mod7空间不同,这些mod7空间基本上是离散的。这些空间的数学性质来源于Clough和Hook提出的全音阶类集和一般音高空间的性质。在给出这些导音空间的构造和定义mod7空间中的OPTIC关系之后,本文给出了二音和三音和弦的mod7 OPTIC-、OPTI-、OPT-和op -空间。研究的最后一部分表明,尽管这些格子的离散模7版本看起来与连续模12版本大不相同,但每个图的拓扑空间仅取决于和弦中的音符数量和应用的特定OPTIC关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic (Mod-7) Voice-Leading Spaces
This article constructs generic voice-leading spaces by combining geometric approaches to voice leading with diatonic set theory. Unlike the continuous mod-12 spaces developed by Callender, Quinn, and Tymoczko, these mod-7 spaces are fundamentally discrete. The mathematical properties of these spaces derive from the properties of diatonic pitch-class sets and generic pitch spaces developed by Clough and Hook. After presenting the construction of these voice-leading spaces and defining the OPTIC relations in mod-7 space, this article presents the mod-7 OPTIC-, OPTI-, OPT-, and OP-spaces of two- and three-note chords. The final section of the study shows that, although the discrete mod-7 versions of these lattices appear quite different from their continuous mod-12 counterparts, the topological space underlying each of these graphs depends solely on the number of notes in the chords and the particular OPTIC relations applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信