基于响应面法的龙舌兰纤维增强胶凝复合材料抗弯抗压性能优化

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
Samir Deghboudj, Wafia Boukhedena, H. Satha
{"title":"基于响应面法的龙舌兰纤维增强胶凝复合材料抗弯抗压性能优化","authors":"Samir Deghboudj, Wafia Boukhedena, H. Satha","doi":"10.3311/ppci.21696","DOIUrl":null,"url":null,"abstract":"The purpose of this research is to optimize several variables, including fiber length, volumetric fiber percentage, and sodium hydroxide (NaOH) solution concentration, which influence the bending and compression behavior of cementitious composites reinforced with plant-based fibers from Agave americana. Samples of composites based on fibers extracted from Agave americana and a cement matrix were manufactured and prepared according to a reference mortar. Box-Behnken Design (BBD) of Response Surface Methodology (RSM) was employed to build an experimental design to explore their mechanical behavior and to construct a set of mathematical models predictive of their behavior. The first stage of the work includes the extraction and processing of Agave americana fibers and the preparation of cement and Agave americana mortar specimens. The second phase aims to establish mathematical models to forecast the workability of the cement mortar and its strength at 28 days while emphasizing the correlations and interactions between the different components through the Design Expert software.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Bending and Compressive Strength Behavior of Agave americana Fiber Reinforced Cementitious Composite Using Response Surface Methodology\",\"authors\":\"Samir Deghboudj, Wafia Boukhedena, H. Satha\",\"doi\":\"10.3311/ppci.21696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this research is to optimize several variables, including fiber length, volumetric fiber percentage, and sodium hydroxide (NaOH) solution concentration, which influence the bending and compression behavior of cementitious composites reinforced with plant-based fibers from Agave americana. Samples of composites based on fibers extracted from Agave americana and a cement matrix were manufactured and prepared according to a reference mortar. Box-Behnken Design (BBD) of Response Surface Methodology (RSM) was employed to build an experimental design to explore their mechanical behavior and to construct a set of mathematical models predictive of their behavior. The first stage of the work includes the extraction and processing of Agave americana fibers and the preparation of cement and Agave americana mortar specimens. The second phase aims to establish mathematical models to forecast the workability of the cement mortar and its strength at 28 days while emphasizing the correlations and interactions between the different components through the Design Expert software.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.21696\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.21696","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是优化影响龙舌兰植物基纤维增强胶凝复合材料弯曲和压缩性能的几个变量,包括纤维长度、体积纤维百分比和氢氧化钠溶液浓度。从美洲龙舌兰中提取的纤维和水泥基体制备复合材料样品,并根据参考砂浆进行制备。采用响应面法(RSM)的Box-Behnken设计(BBD)进行试验设计,探讨其力学行为,并建立一套预测其力学行为的数学模型。第一阶段的工作包括美洲龙舌兰纤维的提取和加工,以及水泥和美洲龙舌兰砂浆标本的制备。第二阶段旨在通过Design Expert软件建立数学模型,预测水泥砂浆在28天内的可工作性及其强度,同时强调不同成分之间的相关性和相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Bending and Compressive Strength Behavior of Agave americana Fiber Reinforced Cementitious Composite Using Response Surface Methodology
The purpose of this research is to optimize several variables, including fiber length, volumetric fiber percentage, and sodium hydroxide (NaOH) solution concentration, which influence the bending and compression behavior of cementitious composites reinforced with plant-based fibers from Agave americana. Samples of composites based on fibers extracted from Agave americana and a cement matrix were manufactured and prepared according to a reference mortar. Box-Behnken Design (BBD) of Response Surface Methodology (RSM) was employed to build an experimental design to explore their mechanical behavior and to construct a set of mathematical models predictive of their behavior. The first stage of the work includes the extraction and processing of Agave americana fibers and the preparation of cement and Agave americana mortar specimens. The second phase aims to establish mathematical models to forecast the workability of the cement mortar and its strength at 28 days while emphasizing the correlations and interactions between the different components through the Design Expert software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodica Polytechnica-Civil Engineering
Periodica Polytechnica-Civil Engineering 工程技术-工程:土木
CiteScore
3.40
自引率
16.70%
发文量
89
审稿时长
12 months
期刊介绍: Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly. Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering. The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信