{"title":"半监督图像分类的Top-K伪标记","authors":"Yi Jiang, Hui Sun","doi":"10.4018/ijdwm.316150","DOIUrl":null,"url":null,"abstract":"In this paper, a top-k pseudo labeling method for semi-supervised self-learning is proposed. Pseudo labeling is a key technology in semi-supervised self-learning. Briefly, the quality of the pseudo label generated largely determined the convergence of the neural network and the accuracy obtained. In this paper, the authors use a method called top-k pseudo labeling to generate pseudo label during the training of semi-supervised neural network model. The proposed labeling method helps a lot in learning features from unlabeled data. The proposed method is easy to implement and only relies on the neural network prediction and hyper-parameter k. The experiment results show that the proposed method works well with semi-supervised learning on CIFAR-10 and CIFAR-100 datasets. Also, a variant of top-k labeling for supervised learning named top-k regulation is proposed. The experiment results show that various models can achieve higher accuracy on test set when trained with top-k regulation.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Top-K Pseudo Labeling for Semi-Supervised Image Classification\",\"authors\":\"Yi Jiang, Hui Sun\",\"doi\":\"10.4018/ijdwm.316150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a top-k pseudo labeling method for semi-supervised self-learning is proposed. Pseudo labeling is a key technology in semi-supervised self-learning. Briefly, the quality of the pseudo label generated largely determined the convergence of the neural network and the accuracy obtained. In this paper, the authors use a method called top-k pseudo labeling to generate pseudo label during the training of semi-supervised neural network model. The proposed labeling method helps a lot in learning features from unlabeled data. The proposed method is easy to implement and only relies on the neural network prediction and hyper-parameter k. The experiment results show that the proposed method works well with semi-supervised learning on CIFAR-10 and CIFAR-100 datasets. Also, a variant of top-k labeling for supervised learning named top-k regulation is proposed. The experiment results show that various models can achieve higher accuracy on test set when trained with top-k regulation.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.316150\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.316150","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Top-K Pseudo Labeling for Semi-Supervised Image Classification
In this paper, a top-k pseudo labeling method for semi-supervised self-learning is proposed. Pseudo labeling is a key technology in semi-supervised self-learning. Briefly, the quality of the pseudo label generated largely determined the convergence of the neural network and the accuracy obtained. In this paper, the authors use a method called top-k pseudo labeling to generate pseudo label during the training of semi-supervised neural network model. The proposed labeling method helps a lot in learning features from unlabeled data. The proposed method is easy to implement and only relies on the neural network prediction and hyper-parameter k. The experiment results show that the proposed method works well with semi-supervised learning on CIFAR-10 and CIFAR-100 datasets. Also, a variant of top-k labeling for supervised learning named top-k regulation is proposed. The experiment results show that various models can achieve higher accuracy on test set when trained with top-k regulation.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving