基于神经网络的两阶段自适应分类云工作负荷预测

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Lei Li, Yilin Wang, Lianwen Jin, Xin Zhang, Huiping Qin
{"title":"基于神经网络的两阶段自适应分类云工作负荷预测","authors":"Lei Li, Yilin Wang, Lianwen Jin, Xin Zhang, Huiping Qin","doi":"10.4018/IJGHPC.2019040101","DOIUrl":null,"url":null,"abstract":"Workload prediction is important for automatic scaling of resource management, and a high accuracy of workload prediction can reduce the cost and improve the resource utilization in the cloud. But, the task request is usually random mutation, so it is difficult to achieve more accurate prediction result for single models. Thus, to improve the prediction result, the authors proposed a novel two-stage workload prediction model based on artificial neural networks (ANNs), which is composed of one classification model and two prediction models. On the basis of the first-order gradient feature, the model can categorize the workload into two classes adaptively. Then, it can predict the workload by using the corresponding prediction neural network models according to the classification results. The experiment results demonstrate that the suggested model can achieve more accurate workload prediction compared with other models.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"1 1","pages":"1-23"},"PeriodicalIF":0.6000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Two-Stage Adaptive Classification Cloud Workload Prediction Based on Neural Networks\",\"authors\":\"Lei Li, Yilin Wang, Lianwen Jin, Xin Zhang, Huiping Qin\",\"doi\":\"10.4018/IJGHPC.2019040101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Workload prediction is important for automatic scaling of resource management, and a high accuracy of workload prediction can reduce the cost and improve the resource utilization in the cloud. But, the task request is usually random mutation, so it is difficult to achieve more accurate prediction result for single models. Thus, to improve the prediction result, the authors proposed a novel two-stage workload prediction model based on artificial neural networks (ANNs), which is composed of one classification model and two prediction models. On the basis of the first-order gradient feature, the model can categorize the workload into two classes adaptively. Then, it can predict the workload by using the corresponding prediction neural network models according to the classification results. The experiment results demonstrate that the suggested model can achieve more accurate workload prediction compared with other models.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"1 1\",\"pages\":\"1-23\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJGHPC.2019040101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJGHPC.2019040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 5

摘要

工作负载预测对于资源管理的自动扩展具有重要意义,高准确度的工作负载预测可以降低成本,提高云中资源的利用率。但是,任务请求通常是随机突变的,因此单个模型很难获得更准确的预测结果。为此,作者提出了一种基于人工神经网络(ann)的两阶段工作量预测模型,该模型由一个分类模型和两个预测模型组成。基于一阶梯度特征,该模型可以自适应地将工作负载分为两类。然后,根据分类结果,利用相应的预测神经网络模型对工作量进行预测。实验结果表明,与其他模型相比,该模型可以实现更准确的工作量预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Stage Adaptive Classification Cloud Workload Prediction Based on Neural Networks
Workload prediction is important for automatic scaling of resource management, and a high accuracy of workload prediction can reduce the cost and improve the resource utilization in the cloud. But, the task request is usually random mutation, so it is difficult to achieve more accurate prediction result for single models. Thus, to improve the prediction result, the authors proposed a novel two-stage workload prediction model based on artificial neural networks (ANNs), which is composed of one classification model and two prediction models. On the basis of the first-order gradient feature, the model can categorize the workload into two classes adaptively. Then, it can predict the workload by using the corresponding prediction neural network models according to the classification results. The experiment results demonstrate that the suggested model can achieve more accurate workload prediction compared with other models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信