{"title":"使用组合gan从图像中去除和修复物体","authors":"Jeongwon Pyo, Yuri Goncalves Rocha, Arpan Ghosh, Kwanghee Lee, Gun-Gyo In, Tae-Yong Kuc","doi":"10.23919/ICCAS50221.2020.9268330","DOIUrl":null,"url":null,"abstract":"As recent research on deep learning methods has been actively conducted, a number of deep learning methods have been proposed. In this paper, we propose a method of removing the desired object from an image using generative adversarial networks(GANs) structure. We composed the network in which two GANs are fused. The first GAN erases the target object from the input image, and the second GAN generates an image that fills the empty space with the background. Through this network, we can erase the desired object from the input image and get an image with the erased part filled with the background without any object detection method. We show that the removal of people and vehicles from images of roads using the CityScapes Dataset.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"55 1","pages":"1116-1119"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Object Removal and Inpainting from Image using Combined GANs\",\"authors\":\"Jeongwon Pyo, Yuri Goncalves Rocha, Arpan Ghosh, Kwanghee Lee, Gun-Gyo In, Tae-Yong Kuc\",\"doi\":\"10.23919/ICCAS50221.2020.9268330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As recent research on deep learning methods has been actively conducted, a number of deep learning methods have been proposed. In this paper, we propose a method of removing the desired object from an image using generative adversarial networks(GANs) structure. We composed the network in which two GANs are fused. The first GAN erases the target object from the input image, and the second GAN generates an image that fills the empty space with the background. Through this network, we can erase the desired object from the input image and get an image with the erased part filled with the background without any object detection method. We show that the removal of people and vehicles from images of roads using the CityScapes Dataset.\",\"PeriodicalId\":6732,\"journal\":{\"name\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"55 1\",\"pages\":\"1116-1119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 20th International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS50221.2020.9268330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Object Removal and Inpainting from Image using Combined GANs
As recent research on deep learning methods has been actively conducted, a number of deep learning methods have been proposed. In this paper, we propose a method of removing the desired object from an image using generative adversarial networks(GANs) structure. We composed the network in which two GANs are fused. The first GAN erases the target object from the input image, and the second GAN generates an image that fills the empty space with the background. Through this network, we can erase the desired object from the input image and get an image with the erased part filled with the background without any object detection method. We show that the removal of people and vehicles from images of roads using the CityScapes Dataset.