{"title":"磁单极子的费曼-卡茨公式","authors":"J. Dimock","doi":"10.1142/s0219025721500156","DOIUrl":null,"url":null,"abstract":"We consider the quantum mechanics of a charged particle in the presence of Dirac's magnetic monopole. Wave functions are sections of a complex line bundle and the magnetic potential is a connection on the bundle. We establish a Feynman-Kac formula expressing solutions of the imaginary time Schrodinger equation as stochastic integrals.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Feynman–Kac formula for magnetic monopoles\",\"authors\":\"J. Dimock\",\"doi\":\"10.1142/s0219025721500156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the quantum mechanics of a charged particle in the presence of Dirac's magnetic monopole. Wave functions are sections of a complex line bundle and the magnetic potential is a connection on the bundle. We establish a Feynman-Kac formula expressing solutions of the imaginary time Schrodinger equation as stochastic integrals.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219025721500156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219025721500156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the quantum mechanics of a charged particle in the presence of Dirac's magnetic monopole. Wave functions are sections of a complex line bundle and the magnetic potential is a connection on the bundle. We establish a Feynman-Kac formula expressing solutions of the imaginary time Schrodinger equation as stochastic integrals.