关于K1,r-free图中分量因子的注释

Guowei Dai, Zan-Bo Zhang, Xiaoyan Zhang
{"title":"关于K1,r-free图中分量因子的注释","authors":"Guowei Dai, Zan-Bo Zhang, Xiaoyan Zhang","doi":"10.1051/ro/2023042","DOIUrl":null,"url":null,"abstract":"An $\\mathcal{F}$-factor is a spanning subgraph $H$ such that each connected component of $H$ is isomorphic to some graph in $\\mathcal{F}$. We use $P_k$ and $K_{1,r}$ to denote the path of order $k$ and the star of order $r+1$, respectively. In particular, $H$ is called a $\\{P_2,P_3\\}$-factor of $G$ if $\\mathcal{F}=\\{P_2,P_3\\}$; $H$ is called a $\\mathcal{P}_{\\geq k}$-factor of $G$ if $\\mathcal{F}=\\{P_2,P_3,...,P_k\\}$, where $k\\geq2$; $H$ is called an $\\mathcal{S}_n$-factor of $G$ if $\\mathcal{F}=\\{P_2,P_3,K_{1,3},...,K_{1,n}\\}$, where $n\\geq2$. A graph $G$ is called a $\\mathcal{P}_{\\geq k}$-factor covered graph if there is a $\\mathcal{P}_{\\geq k}$-factor of $G$ including $e$ for any $e\\in E(G)$. We call a graph $G$ is $K_{1,r}$-free if $G$ does not contain an induced subgraph isomorphic to $K_{1,r}$.\nIn this paper, we give a minimum degree condition for the $K_{1,r}$-free graph with an $\\mathcal{S}_n$-factor and the $K_{1,r}$-free graph with a $\\mathcal{P}_{\\geq 3}$-factor, respectively. Further, we obtain sufficient conditions for $K_{1,r}$-free graphs to be $\\mathcal{P}_{\\geq 2}$-factor, $\\mathcal{P}_{\\geq 3}$-factor or $\\{P_2,P_3\\}$-factor covered graphs. In addition, examples show that our results are sharp.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remarks on component factors in K1,r-free graphs\",\"authors\":\"Guowei Dai, Zan-Bo Zhang, Xiaoyan Zhang\",\"doi\":\"10.1051/ro/2023042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An $\\\\mathcal{F}$-factor is a spanning subgraph $H$ such that each connected component of $H$ is isomorphic to some graph in $\\\\mathcal{F}$. We use $P_k$ and $K_{1,r}$ to denote the path of order $k$ and the star of order $r+1$, respectively. In particular, $H$ is called a $\\\\{P_2,P_3\\\\}$-factor of $G$ if $\\\\mathcal{F}=\\\\{P_2,P_3\\\\}$; $H$ is called a $\\\\mathcal{P}_{\\\\geq k}$-factor of $G$ if $\\\\mathcal{F}=\\\\{P_2,P_3,...,P_k\\\\}$, where $k\\\\geq2$; $H$ is called an $\\\\mathcal{S}_n$-factor of $G$ if $\\\\mathcal{F}=\\\\{P_2,P_3,K_{1,3},...,K_{1,n}\\\\}$, where $n\\\\geq2$. A graph $G$ is called a $\\\\mathcal{P}_{\\\\geq k}$-factor covered graph if there is a $\\\\mathcal{P}_{\\\\geq k}$-factor of $G$ including $e$ for any $e\\\\in E(G)$. We call a graph $G$ is $K_{1,r}$-free if $G$ does not contain an induced subgraph isomorphic to $K_{1,r}$.\\nIn this paper, we give a minimum degree condition for the $K_{1,r}$-free graph with an $\\\\mathcal{S}_n$-factor and the $K_{1,r}$-free graph with a $\\\\mathcal{P}_{\\\\geq 3}$-factor, respectively. Further, we obtain sufficient conditions for $K_{1,r}$-free graphs to be $\\\\mathcal{P}_{\\\\geq 2}$-factor, $\\\\mathcal{P}_{\\\\geq 3}$-factor or $\\\\{P_2,P_3\\\\}$-factor covered graphs. In addition, examples show that our results are sharp.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

a $\mathcal{F}$-factor是生成子图 $H$ 这样每个相连的部分 $H$ 是否同构于中的某个图 $\mathcal{F}$. 我们使用 $P_k$ 和 $K_{1,r}$ 表示顺序的路径 $k$ 还有秩序之星 $r+1$,分别。特别是, $H$ 叫做a $\{P_2,P_3\}$-因子 $G$ 如果 $\mathcal{F}=\{P_2,P_3\}$; $H$ 叫做a $\mathcal{P}_{\geq k}$-因子 $G$ 如果 $\mathcal{F}=\{P_2,P_3,...,P_k\}$,其中 $k\geq2$; $H$ 叫做 $\mathcal{S}_n$-因子 $G$ 如果 $\mathcal{F}=\{P_2,P_3,K_{1,3},...,K_{1,n}\}$,其中 $n\geq2$. 图表 $G$ 叫做a $\mathcal{P}_{\geq k}$-因子覆盖图,如果有 $\mathcal{P}_{\geq k}$-因子 $G$ 包括 $e$ 对于任何 $e\in E(G)$. 我们称之为图形 $G$ 是 $K_{1,r}$免运费 $G$ 不包含与同构的诱导子图 $K_{1,r}$在本文中,我们给出了一个最小度条件 $K_{1,r}$自由图 $\mathcal{S}_n$-因子和 $K_{1,r}$带a的自由图 $\mathcal{P}_{\geq 3}$分别是-因子。进一步,我们得到了的充分条件 $K_{1,r}$自由图 $\mathcal{P}_{\geq 2}$-因子, $\mathcal{P}_{\geq 3}$-因子或 $\{P_2,P_3\}$-因子覆盖图。此外,实例表明我们的结果是清晰的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on component factors in K1,r-free graphs
An $\mathcal{F}$-factor is a spanning subgraph $H$ such that each connected component of $H$ is isomorphic to some graph in $\mathcal{F}$. We use $P_k$ and $K_{1,r}$ to denote the path of order $k$ and the star of order $r+1$, respectively. In particular, $H$ is called a $\{P_2,P_3\}$-factor of $G$ if $\mathcal{F}=\{P_2,P_3\}$; $H$ is called a $\mathcal{P}_{\geq k}$-factor of $G$ if $\mathcal{F}=\{P_2,P_3,...,P_k\}$, where $k\geq2$; $H$ is called an $\mathcal{S}_n$-factor of $G$ if $\mathcal{F}=\{P_2,P_3,K_{1,3},...,K_{1,n}\}$, where $n\geq2$. A graph $G$ is called a $\mathcal{P}_{\geq k}$-factor covered graph if there is a $\mathcal{P}_{\geq k}$-factor of $G$ including $e$ for any $e\in E(G)$. We call a graph $G$ is $K_{1,r}$-free if $G$ does not contain an induced subgraph isomorphic to $K_{1,r}$. In this paper, we give a minimum degree condition for the $K_{1,r}$-free graph with an $\mathcal{S}_n$-factor and the $K_{1,r}$-free graph with a $\mathcal{P}_{\geq 3}$-factor, respectively. Further, we obtain sufficient conditions for $K_{1,r}$-free graphs to be $\mathcal{P}_{\geq 2}$-factor, $\mathcal{P}_{\geq 3}$-factor or $\{P_2,P_3\}$-factor covered graphs. In addition, examples show that our results are sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信