基于深度学习的多模波导有效折射率预测

Tianhang Yao, Tianye Huang, Yuan Xie, Zhichao Wu, Dapeng Luo, Zhuo Cheng, P. Ping
{"title":"基于深度学习的多模波导有效折射率预测","authors":"Tianhang Yao, Tianye Huang, Yuan Xie, Zhichao Wu, Dapeng Luo, Zhuo Cheng, P. Ping","doi":"10.1109/ICOCN53177.2021.9563662","DOIUrl":null,"url":null,"abstract":"In order to accelerate the multimode waveguide design, several regression models are employed to predict the effective refractive indices (neff) from fundamental mode to fourth-order TE mode with various waveguide geometric parameters. On dataset with air cladding, the percent of eligible data whose prediction error is less than 10–3 of different modes are respectively 89.95%, 88.10%, 82.29%, 75.83%, 71.19%. And on dataset with SiO2 cladding, they are 95.40%, 92.81 %, 90.90%, 81.99%, 86.39%. This study guides the structural design and optimization of optical waveguides based on machine learning.","PeriodicalId":6756,"journal":{"name":"2021 19th International Conference on Optical Communications and Networks (ICOCN)","volume":"71 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Effective Refractive Indices of Multimode Waveguide via Deep Learning\",\"authors\":\"Tianhang Yao, Tianye Huang, Yuan Xie, Zhichao Wu, Dapeng Luo, Zhuo Cheng, P. Ping\",\"doi\":\"10.1109/ICOCN53177.2021.9563662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to accelerate the multimode waveguide design, several regression models are employed to predict the effective refractive indices (neff) from fundamental mode to fourth-order TE mode with various waveguide geometric parameters. On dataset with air cladding, the percent of eligible data whose prediction error is less than 10–3 of different modes are respectively 89.95%, 88.10%, 82.29%, 75.83%, 71.19%. And on dataset with SiO2 cladding, they are 95.40%, 92.81 %, 90.90%, 81.99%, 86.39%. This study guides the structural design and optimization of optical waveguides based on machine learning.\",\"PeriodicalId\":6756,\"journal\":{\"name\":\"2021 19th International Conference on Optical Communications and Networks (ICOCN)\",\"volume\":\"71 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 19th International Conference on Optical Communications and Networks (ICOCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOCN53177.2021.9563662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 19th International Conference on Optical Communications and Networks (ICOCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCN53177.2021.9563662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了加速多模波导的设计,采用了几种回归模型来预测不同波导几何参数下从基模到四阶TE模的有效折射率(neff)。在空气包覆数据集上,不同模式下预测误差小于10-3的合格数据比例分别为89.95%、88.10%、82.29%、75.83%、71.19%。在SiO2包覆数据集上,它们分别为95.40%、92.81%、90.90%、81.99%、86.39%。本研究为基于机器学习的光波导结构设计与优化提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Effective Refractive Indices of Multimode Waveguide via Deep Learning
In order to accelerate the multimode waveguide design, several regression models are employed to predict the effective refractive indices (neff) from fundamental mode to fourth-order TE mode with various waveguide geometric parameters. On dataset with air cladding, the percent of eligible data whose prediction error is less than 10–3 of different modes are respectively 89.95%, 88.10%, 82.29%, 75.83%, 71.19%. And on dataset with SiO2 cladding, they are 95.40%, 92.81 %, 90.90%, 81.99%, 86.39%. This study guides the structural design and optimization of optical waveguides based on machine learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信