{"title":"用q-同伦分析变换方法求解超导非线性分数阶模型","authors":"K. Ali, M. Maneea, M. Mohamed","doi":"10.1155/2023/6647375","DOIUrl":null,"url":null,"abstract":"The Ginzburg–Landau (GL) equation and the Ginzburg–Landau couple system are important models in the study of superconductivity and superfluidity. This study describes the q-homotopy analysis transform method (q-HATM) as a powerful technique for solving nonlinear problems, which has been successfully used with a set of mathematical models in physics, engineering, and biology. We apply the q-HATM to solve the Ginzburg–Landau equation and the Ginzburg–Landau coupled system and derive analytical solutions in terms of the q-series. Also, we investigate the convergence and accuracy of the obtained solutions. Our results show that q-HATM is a reliable and promising approach for solving nonlinear differential equations and provides a valuable tool for researchers in the field of superconductivity. Several graphs have been presented for the solutions obtained utilizing different levels of the fractional-order derivative and at various points in time.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"25 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solving Nonlinear Fractional Models in Superconductivity Using the q-Homotopy Analysis Transform Method\",\"authors\":\"K. Ali, M. Maneea, M. Mohamed\",\"doi\":\"10.1155/2023/6647375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ginzburg–Landau (GL) equation and the Ginzburg–Landau couple system are important models in the study of superconductivity and superfluidity. This study describes the q-homotopy analysis transform method (q-HATM) as a powerful technique for solving nonlinear problems, which has been successfully used with a set of mathematical models in physics, engineering, and biology. We apply the q-HATM to solve the Ginzburg–Landau equation and the Ginzburg–Landau coupled system and derive analytical solutions in terms of the q-series. Also, we investigate the convergence and accuracy of the obtained solutions. Our results show that q-HATM is a reliable and promising approach for solving nonlinear differential equations and provides a valuable tool for researchers in the field of superconductivity. Several graphs have been presented for the solutions obtained utilizing different levels of the fractional-order derivative and at various points in time.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6647375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6647375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Solving Nonlinear Fractional Models in Superconductivity Using the q-Homotopy Analysis Transform Method
The Ginzburg–Landau (GL) equation and the Ginzburg–Landau couple system are important models in the study of superconductivity and superfluidity. This study describes the q-homotopy analysis transform method (q-HATM) as a powerful technique for solving nonlinear problems, which has been successfully used with a set of mathematical models in physics, engineering, and biology. We apply the q-HATM to solve the Ginzburg–Landau equation and the Ginzburg–Landau coupled system and derive analytical solutions in terms of the q-series. Also, we investigate the convergence and accuracy of the obtained solutions. Our results show that q-HATM is a reliable and promising approach for solving nonlinear differential equations and provides a valuable tool for researchers in the field of superconductivity. Several graphs have been presented for the solutions obtained utilizing different levels of the fractional-order derivative and at various points in time.