用q-同伦分析变换方法求解超导非线性分数阶模型

IF 0.7 Q2 MATHEMATICS
K. Ali, M. Maneea, M. Mohamed
{"title":"用q-同伦分析变换方法求解超导非线性分数阶模型","authors":"K. Ali, M. Maneea, M. Mohamed","doi":"10.1155/2023/6647375","DOIUrl":null,"url":null,"abstract":"The Ginzburg–Landau (GL) equation and the Ginzburg–Landau couple system are important models in the study of superconductivity and superfluidity. This study describes the q-homotopy analysis transform method (q-HATM) as a powerful technique for solving nonlinear problems, which has been successfully used with a set of mathematical models in physics, engineering, and biology. We apply the q-HATM to solve the Ginzburg–Landau equation and the Ginzburg–Landau coupled system and derive analytical solutions in terms of the q-series. Also, we investigate the convergence and accuracy of the obtained solutions. Our results show that q-HATM is a reliable and promising approach for solving nonlinear differential equations and provides a valuable tool for researchers in the field of superconductivity. Several graphs have been presented for the solutions obtained utilizing different levels of the fractional-order derivative and at various points in time.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solving Nonlinear Fractional Models in Superconductivity Using the q-Homotopy Analysis Transform Method\",\"authors\":\"K. Ali, M. Maneea, M. Mohamed\",\"doi\":\"10.1155/2023/6647375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Ginzburg–Landau (GL) equation and the Ginzburg–Landau couple system are important models in the study of superconductivity and superfluidity. This study describes the q-homotopy analysis transform method (q-HATM) as a powerful technique for solving nonlinear problems, which has been successfully used with a set of mathematical models in physics, engineering, and biology. We apply the q-HATM to solve the Ginzburg–Landau equation and the Ginzburg–Landau coupled system and derive analytical solutions in terms of the q-series. Also, we investigate the convergence and accuracy of the obtained solutions. Our results show that q-HATM is a reliable and promising approach for solving nonlinear differential equations and provides a valuable tool for researchers in the field of superconductivity. Several graphs have been presented for the solutions obtained utilizing different levels of the fractional-order derivative and at various points in time.\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6647375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6647375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

Ginzburg-Landau (GL)方程和Ginzburg-Landau偶系是研究超导和超流体的重要模型。本研究将q-同伦分析变换方法(q-HATM)描述为一种解决非线性问题的强大技术,该方法已成功地应用于物理、工程和生物学中的一组数学模型。我们应用q-HATM来求解Ginzburg-Landau方程和Ginzburg-Landau耦合系统,并推导出q级数的解析解。同时,研究了所得解的收敛性和准确性。我们的研究结果表明,q-HATM是一种可靠的、有前途的求解非线性微分方程的方法,为超导领域的研究人员提供了一个有价值的工具。对于利用分数阶导数的不同层次和在不同时间点得到的解,给出了几个图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Nonlinear Fractional Models in Superconductivity Using the q-Homotopy Analysis Transform Method
The Ginzburg–Landau (GL) equation and the Ginzburg–Landau couple system are important models in the study of superconductivity and superfluidity. This study describes the q-homotopy analysis transform method (q-HATM) as a powerful technique for solving nonlinear problems, which has been successfully used with a set of mathematical models in physics, engineering, and biology. We apply the q-HATM to solve the Ginzburg–Landau equation and the Ginzburg–Landau coupled system and derive analytical solutions in terms of the q-series. Also, we investigate the convergence and accuracy of the obtained solutions. Our results show that q-HATM is a reliable and promising approach for solving nonlinear differential equations and provides a valuable tool for researchers in the field of superconductivity. Several graphs have been presented for the solutions obtained utilizing different levels of the fractional-order derivative and at various points in time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信