{"title":"Cn中的极值函数","authors":"Nurbek Narzillaev","doi":"10.17516/1997-1397-2021-14-3-389-398","DOIUrl":null,"url":null,"abstract":"The article is devoted to properties of a weighted Green function. We study the (δ, ψ)- extremal Green function V ∗ δ (z,K, ψ) defined by the class Lδ = { u(z) ∈ psh(Cn) : u(z) 6 Cu + δ ln+ |z|, z ∈ Cn} , δ > 0. We see that the notion of regularity of points with respect to different numbers δ differ from each other. Nevertheless, we prove that if a compact set K ⊂ Cn is regular, then δ-extremal function is continuous in the whole space Cn","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"182 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delta-extremal Functions in Cn\",\"authors\":\"Nurbek Narzillaev\",\"doi\":\"10.17516/1997-1397-2021-14-3-389-398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is devoted to properties of a weighted Green function. We study the (δ, ψ)- extremal Green function V ∗ δ (z,K, ψ) defined by the class Lδ = { u(z) ∈ psh(Cn) : u(z) 6 Cu + δ ln+ |z|, z ∈ Cn} , δ > 0. We see that the notion of regularity of points with respect to different numbers δ differ from each other. Nevertheless, we prove that if a compact set K ⊂ Cn is regular, then δ-extremal function is continuous in the whole space Cn\",\"PeriodicalId\":43965,\"journal\":{\"name\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"volume\":\"182 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2021-14-3-389-398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2021-14-3-389-398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
The article is devoted to properties of a weighted Green function. We study the (δ, ψ)- extremal Green function V ∗ δ (z,K, ψ) defined by the class Lδ = { u(z) ∈ psh(Cn) : u(z) 6 Cu + δ ln+ |z|, z ∈ Cn} , δ > 0. We see that the notion of regularity of points with respect to different numbers δ differ from each other. Nevertheless, we prove that if a compact set K ⊂ Cn is regular, then δ-extremal function is continuous in the whole space Cn