{"title":"温度预报作为减缓气候变化的手段及其影响——以马里为例","authors":"Utibe Billy","doi":"10.17737/tre.2023.9.2.00158","DOIUrl":null,"url":null,"abstract":"Temperature forecasts and trend analyzes were carried out for several locations in Mali as an important tool for warning of potentially threatening weather events such as severe heat waves, storms, droughts and floods, which could pose a great risk to humans and their environment. Five locations (Segou, Sikasso, Kayes, Gao and Taoudenni) across Mali (170 00’N – 40 00’W) were chosen for this research work. Satellite data of annual temperature obtained from the European Centre for Medium-Range Weather Forecast (ECMWF) database for 35 years (1985-2019) was used for this work. The Mann-Kendall trend test was carried out for various locations to observe and study the trend. Four Models including Auto Regressive and Integrated Moving Average (ARIMA), Exponential smoothening (ETS), TBATS (Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components) and the linear model were employed to forecast average temperature for 10 years for all the locations. The model that produces the best forecast at the 95% confidence level is expected to have the lowest Root Mean Square Error (RMSE) value. The results showed that no significant trends were recorded at the considered locations. The linear model produced the best forecast for Segou, Kayes and Taoudenni, while the TBATS model produced the best forecast for Gao and the ARIMA model produced the best forecast for Sikasso.","PeriodicalId":23305,"journal":{"name":"Trends in Renewable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature Forecasting as a Means of Mitigating Climate Change and Its Effects: A Case Study of Mali\",\"authors\":\"Utibe Billy\",\"doi\":\"10.17737/tre.2023.9.2.00158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature forecasts and trend analyzes were carried out for several locations in Mali as an important tool for warning of potentially threatening weather events such as severe heat waves, storms, droughts and floods, which could pose a great risk to humans and their environment. Five locations (Segou, Sikasso, Kayes, Gao and Taoudenni) across Mali (170 00’N – 40 00’W) were chosen for this research work. Satellite data of annual temperature obtained from the European Centre for Medium-Range Weather Forecast (ECMWF) database for 35 years (1985-2019) was used for this work. The Mann-Kendall trend test was carried out for various locations to observe and study the trend. Four Models including Auto Regressive and Integrated Moving Average (ARIMA), Exponential smoothening (ETS), TBATS (Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components) and the linear model were employed to forecast average temperature for 10 years for all the locations. The model that produces the best forecast at the 95% confidence level is expected to have the lowest Root Mean Square Error (RMSE) value. The results showed that no significant trends were recorded at the considered locations. The linear model produced the best forecast for Segou, Kayes and Taoudenni, while the TBATS model produced the best forecast for Gao and the ARIMA model produced the best forecast for Sikasso.\",\"PeriodicalId\":23305,\"journal\":{\"name\":\"Trends in Renewable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17737/tre.2023.9.2.00158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17737/tre.2023.9.2.00158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temperature Forecasting as a Means of Mitigating Climate Change and Its Effects: A Case Study of Mali
Temperature forecasts and trend analyzes were carried out for several locations in Mali as an important tool for warning of potentially threatening weather events such as severe heat waves, storms, droughts and floods, which could pose a great risk to humans and their environment. Five locations (Segou, Sikasso, Kayes, Gao and Taoudenni) across Mali (170 00’N – 40 00’W) were chosen for this research work. Satellite data of annual temperature obtained from the European Centre for Medium-Range Weather Forecast (ECMWF) database for 35 years (1985-2019) was used for this work. The Mann-Kendall trend test was carried out for various locations to observe and study the trend. Four Models including Auto Regressive and Integrated Moving Average (ARIMA), Exponential smoothening (ETS), TBATS (Trigonometric seasonality, Box-Cox transformation, ARMA errors, Trend and Seasonal components) and the linear model were employed to forecast average temperature for 10 years for all the locations. The model that produces the best forecast at the 95% confidence level is expected to have the lowest Root Mean Square Error (RMSE) value. The results showed that no significant trends were recorded at the considered locations. The linear model produced the best forecast for Segou, Kayes and Taoudenni, while the TBATS model produced the best forecast for Gao and the ARIMA model produced the best forecast for Sikasso.