康托与斯科特:概率网络的语义基础

S. Smolka, Praveen Kumar, Nate Foster, D. Kozen, Alexandra Silva
{"title":"康托与斯科特:概率网络的语义基础","authors":"S. Smolka, Praveen Kumar, Nate Foster, D. Kozen, Alexandra Silva","doi":"10.1145/3009837.3009843","DOIUrl":null,"url":null,"abstract":"ProbNetKAT is a probabilistic extension of NetKAT with a denotational semantics based on Markov kernels. The language is expressive enough to generate continuous distributions, which raises the question of how to compute effectively in the language. This paper gives an new characterization of ProbNetKAT’s semantics using domain theory, which provides the foundation needed to build a practical implementation. We show how to use the semantics to approximate the behavior of arbitrary ProbNetKAT programs using distributions with finite support. We develop a prototype implementation and show how to use it to solve a variety of problems including characterizing the expected congestion induced by different routing schemes and reasoning probabilistically about reachability in a network.","PeriodicalId":20657,"journal":{"name":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","volume":"220 12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Cantor meets Scott: semantic foundations for probabilistic networks\",\"authors\":\"S. Smolka, Praveen Kumar, Nate Foster, D. Kozen, Alexandra Silva\",\"doi\":\"10.1145/3009837.3009843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ProbNetKAT is a probabilistic extension of NetKAT with a denotational semantics based on Markov kernels. The language is expressive enough to generate continuous distributions, which raises the question of how to compute effectively in the language. This paper gives an new characterization of ProbNetKAT’s semantics using domain theory, which provides the foundation needed to build a practical implementation. We show how to use the semantics to approximate the behavior of arbitrary ProbNetKAT programs using distributions with finite support. We develop a prototype implementation and show how to use it to solve a variety of problems including characterizing the expected congestion induced by different routing schemes and reasoning probabilistically about reachability in a network.\",\"PeriodicalId\":20657,\"journal\":{\"name\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"volume\":\"220 12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009837.3009843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009837.3009843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

ProbNetKAT是NetKAT的概率扩展,具有基于马尔可夫核的指称语义。该语言的表达能力足以生成连续分布,这就提出了如何在该语言中进行有效计算的问题。本文利用领域理论给出了ProbNetKAT语义的新表征,为构建实际实现提供了基础。我们展示了如何使用语义来近似任意ProbNetKAT程序的行为,使用具有有限支持的分布。我们开发了一个原型实现,并展示了如何使用它来解决各种问题,包括描述由不同路由方案引起的预期拥塞和网络可达性的概率推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cantor meets Scott: semantic foundations for probabilistic networks
ProbNetKAT is a probabilistic extension of NetKAT with a denotational semantics based on Markov kernels. The language is expressive enough to generate continuous distributions, which raises the question of how to compute effectively in the language. This paper gives an new characterization of ProbNetKAT’s semantics using domain theory, which provides the foundation needed to build a practical implementation. We show how to use the semantics to approximate the behavior of arbitrary ProbNetKAT programs using distributions with finite support. We develop a prototype implementation and show how to use it to solve a variety of problems including characterizing the expected congestion induced by different routing schemes and reasoning probabilistically about reachability in a network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信