{"title":"机械合金化法制备MA6000合金,研究了Y2O3掺量对其磨损性能的影响","authors":"S. Çelik, D. Özyürek, T. Tunçay","doi":"10.2298/jmmb220113010c","DOIUrl":null,"url":null,"abstract":"This paper investigated the wear performances of Y2O3 doped MA6000 (Ni-Cr-Al) alloy produced by mechanical alloying (MA). Produced, all powders were pre-formed by cold pressing and sintered in a vacuum environment. Sintered MA6000-X% Y2O3 superalloys were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) analysis, density, and hardness measurements. Wear tests of Y2O3 added MA6000 alloys were carried out in a block-on-ring type wear device. In the wear tests, the sliding speed of 1 ms-1 at room temperature (RT) was performed under five different sliding distances (200-1000m) and three different loads (5 N, 10 N, and 15 N). As a result of the studies, it was determined that the MA?ed MA6000 superalloy powders were homogeneous and flake shape. With the increase amount of Y2O3, hardness of these superalloys increased from 267 to 431 Hv, but the density slightly decreased. Different intermetallic/carbur phases such as Ni3Al, MoC are observed in all compositions. Wear tests show that weight loss and wear rate decreased, and friction coefficient (?) increased with the increasing amount of Y2O3 additive. Besides, it was determined that as the applied load increased in the wear test, the weight loss increased, but the wear rate and friction coefficient (?) decreased.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"67 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect on wear behavior of the amount of Y2O3 doped to the MA6000 alloy produced by mechanical alloying method\",\"authors\":\"S. Çelik, D. Özyürek, T. Tunçay\",\"doi\":\"10.2298/jmmb220113010c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigated the wear performances of Y2O3 doped MA6000 (Ni-Cr-Al) alloy produced by mechanical alloying (MA). Produced, all powders were pre-formed by cold pressing and sintered in a vacuum environment. Sintered MA6000-X% Y2O3 superalloys were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) analysis, density, and hardness measurements. Wear tests of Y2O3 added MA6000 alloys were carried out in a block-on-ring type wear device. In the wear tests, the sliding speed of 1 ms-1 at room temperature (RT) was performed under five different sliding distances (200-1000m) and three different loads (5 N, 10 N, and 15 N). As a result of the studies, it was determined that the MA?ed MA6000 superalloy powders were homogeneous and flake shape. With the increase amount of Y2O3, hardness of these superalloys increased from 267 to 431 Hv, but the density slightly decreased. Different intermetallic/carbur phases such as Ni3Al, MoC are observed in all compositions. Wear tests show that weight loss and wear rate decreased, and friction coefficient (?) increased with the increasing amount of Y2O3 additive. Besides, it was determined that as the applied load increased in the wear test, the weight loss increased, but the wear rate and friction coefficient (?) decreased.\",\"PeriodicalId\":51090,\"journal\":{\"name\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/jmmb220113010c\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/jmmb220113010c","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
The effect on wear behavior of the amount of Y2O3 doped to the MA6000 alloy produced by mechanical alloying method
This paper investigated the wear performances of Y2O3 doped MA6000 (Ni-Cr-Al) alloy produced by mechanical alloying (MA). Produced, all powders were pre-formed by cold pressing and sintered in a vacuum environment. Sintered MA6000-X% Y2O3 superalloys were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) analysis, density, and hardness measurements. Wear tests of Y2O3 added MA6000 alloys were carried out in a block-on-ring type wear device. In the wear tests, the sliding speed of 1 ms-1 at room temperature (RT) was performed under five different sliding distances (200-1000m) and three different loads (5 N, 10 N, and 15 N). As a result of the studies, it was determined that the MA?ed MA6000 superalloy powders were homogeneous and flake shape. With the increase amount of Y2O3, hardness of these superalloys increased from 267 to 431 Hv, but the density slightly decreased. Different intermetallic/carbur phases such as Ni3Al, MoC are observed in all compositions. Wear tests show that weight loss and wear rate decreased, and friction coefficient (?) increased with the increasing amount of Y2O3 additive. Besides, it was determined that as the applied load increased in the wear test, the weight loss increased, but the wear rate and friction coefficient (?) decreased.
期刊介绍:
University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded.
Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.