曲线奇点的同调berglund - h bsch镜像对称

IF 0.6 3区 数学 Q3 MATHEMATICS
Matthew Habermann, Jack Smith
{"title":"曲线奇点的同调berglund - h<s:1> bsch镜像对称","authors":"Matthew Habermann, Jack Smith","doi":"10.4310/JSG.2020.V18.N6.A2","DOIUrl":null,"url":null,"abstract":"Given a two-variable invertible polynomial, we show that its category of maximally-graded matrix factorisations is quasi-equivalent to the Fukaya-Seidel category of its Berglund-Hubsch transpose. This was previously shown for Brieskorn-Pham and $D$-type singularities by Futaki-Ueda. The proof involves explicit construction of a tilting object on the B-side, and comparison with a specific basis of Lefschetz thimbles on the A-side.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"121 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Homological Berglund-Hübsch mirror symmetry for curve singularities\",\"authors\":\"Matthew Habermann, Jack Smith\",\"doi\":\"10.4310/JSG.2020.V18.N6.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a two-variable invertible polynomial, we show that its category of maximally-graded matrix factorisations is quasi-equivalent to the Fukaya-Seidel category of its Berglund-Hubsch transpose. This was previously shown for Brieskorn-Pham and $D$-type singularities by Futaki-Ueda. The proof involves explicit construction of a tilting object on the B-side, and comparison with a specific basis of Lefschetz thimbles on the A-side.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2020.V18.N6.A2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N6.A2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

给定一个两变量可逆多项式,证明了它的最大分级矩阵分解的范畴拟等价于它的Berglund-Hubsch转置的fukya - seidel范畴。这是Futaki-Ueda之前对Brieskorn-Pham和$D$型奇点的证明。证明包括在b面明确构造一个倾斜的物体,并与a面Lefschetz顶针的特定基础进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homological Berglund-Hübsch mirror symmetry for curve singularities
Given a two-variable invertible polynomial, we show that its category of maximally-graded matrix factorisations is quasi-equivalent to the Fukaya-Seidel category of its Berglund-Hubsch transpose. This was previously shown for Brieskorn-Pham and $D$-type singularities by Futaki-Ueda. The proof involves explicit construction of a tilting object on the B-side, and comparison with a specific basis of Lefschetz thimbles on the A-side.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信