曲线奇点的同调berglund - h bsch镜像对称

Pub Date : 2019-03-04 DOI:10.4310/JSG.2020.V18.N6.A2
Matthew Habermann, Jack Smith
{"title":"曲线奇点的同调berglund - h<s:1> bsch镜像对称","authors":"Matthew Habermann, Jack Smith","doi":"10.4310/JSG.2020.V18.N6.A2","DOIUrl":null,"url":null,"abstract":"Given a two-variable invertible polynomial, we show that its category of maximally-graded matrix factorisations is quasi-equivalent to the Fukaya-Seidel category of its Berglund-Hubsch transpose. This was previously shown for Brieskorn-Pham and $D$-type singularities by Futaki-Ueda. The proof involves explicit construction of a tilting object on the B-side, and comparison with a specific basis of Lefschetz thimbles on the A-side.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Homological Berglund-Hübsch mirror symmetry for curve singularities\",\"authors\":\"Matthew Habermann, Jack Smith\",\"doi\":\"10.4310/JSG.2020.V18.N6.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a two-variable invertible polynomial, we show that its category of maximally-graded matrix factorisations is quasi-equivalent to the Fukaya-Seidel category of its Berglund-Hubsch transpose. This was previously shown for Brieskorn-Pham and $D$-type singularities by Futaki-Ueda. The proof involves explicit construction of a tilting object on the B-side, and comparison with a specific basis of Lefschetz thimbles on the A-side.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2020.V18.N6.A2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N6.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

给定一个两变量可逆多项式,证明了它的最大分级矩阵分解的范畴拟等价于它的Berglund-Hubsch转置的fukya - seidel范畴。这是Futaki-Ueda之前对Brieskorn-Pham和$D$型奇点的证明。证明包括在b面明确构造一个倾斜的物体,并与a面Lefschetz顶针的特定基础进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Homological Berglund-Hübsch mirror symmetry for curve singularities
Given a two-variable invertible polynomial, we show that its category of maximally-graded matrix factorisations is quasi-equivalent to the Fukaya-Seidel category of its Berglund-Hubsch transpose. This was previously shown for Brieskorn-Pham and $D$-type singularities by Futaki-Ueda. The proof involves explicit construction of a tilting object on the B-side, and comparison with a specific basis of Lefschetz thimbles on the A-side.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信