一种新的张量恢复稀疏度测度

Qian Zhao, Deyu Meng, Xu Kong, Qi Xie, Wenfei Cao, Yao Wang, Zongben Xu
{"title":"一种新的张量恢复稀疏度测度","authors":"Qian Zhao, Deyu Meng, Xu Kong, Qi Xie, Wenfei Cao, Yao Wang, Zongben Xu","doi":"10.1109/ICCV.2015.39","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new sparsity regularizer for measuring the low-rank structure underneath a tensor. The proposed sparsity measure has a natural physical meaning which is intrinsically the size of the fundamental Kronecker basis to express the tensor. By embedding the sparsity measure into the tensor completion and tensor robust PCA frameworks, we formulate new models to enhance their capability in tensor recovery. Through introducing relaxation forms of the proposed sparsity measure, we also adopt the alternating direction method of multipliers (ADMM) for solving the proposed models. Experiments implemented on synthetic and multispectral image data sets substantiate the effectiveness of the proposed methods.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"112 1","pages":"271-279"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"A Novel Sparsity Measure for Tensor Recovery\",\"authors\":\"Qian Zhao, Deyu Meng, Xu Kong, Qi Xie, Wenfei Cao, Yao Wang, Zongben Xu\",\"doi\":\"10.1109/ICCV.2015.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new sparsity regularizer for measuring the low-rank structure underneath a tensor. The proposed sparsity measure has a natural physical meaning which is intrinsically the size of the fundamental Kronecker basis to express the tensor. By embedding the sparsity measure into the tensor completion and tensor robust PCA frameworks, we formulate new models to enhance their capability in tensor recovery. Through introducing relaxation forms of the proposed sparsity measure, we also adopt the alternating direction method of multipliers (ADMM) for solving the proposed models. Experiments implemented on synthetic and multispectral image data sets substantiate the effectiveness of the proposed methods.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"112 1\",\"pages\":\"271-279\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

本文提出了一种新的稀疏正则化器,用于测量张量下的低秩结构。提出的稀疏度度量具有自然的物理意义,本质上是表示张量的基本Kronecker基的大小。通过将稀疏度测度嵌入到张量补全和张量鲁棒PCA框架中,我们建立了新的模型来增强它们的张量恢复能力。通过引入稀疏度度量的松弛形式,我们还采用乘法器的交替方向法(ADMM)来求解所提出的模型。在合成和多光谱图像数据集上进行的实验验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Sparsity Measure for Tensor Recovery
In this paper, we propose a new sparsity regularizer for measuring the low-rank structure underneath a tensor. The proposed sparsity measure has a natural physical meaning which is intrinsically the size of the fundamental Kronecker basis to express the tensor. By embedding the sparsity measure into the tensor completion and tensor robust PCA frameworks, we formulate new models to enhance their capability in tensor recovery. Through introducing relaxation forms of the proposed sparsity measure, we also adopt the alternating direction method of multipliers (ADMM) for solving the proposed models. Experiments implemented on synthetic and multispectral image data sets substantiate the effectiveness of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信