{"title":"ACCESS-CCM模拟南半球春夏季平流层准平稳波1的未来变化","authors":"K. Stone, A. Klekociuk, R. Schofield","doi":"10.1071/es21002","DOIUrl":null,"url":null,"abstract":"Seasonally dependent quasi-stationary planetary wave activity in the southern hemisphere influences the distribution of ozone within and near the equatorward edge of the stratospheric polar vortex. Accurate representation of this zonal asymmetry in ozone is important in the characterisation of stratospheric circulation and climate and their associated effects at the surface. In this study, we used the Australian Community and Climate Earth System Simulator-Chemistry Climate Model to investigate the influence of greenhouse gases (GHGs) and ozone depleting substances (ODSs) on the zonal asymmetry of total column ozone (TCO) and 10 hPa zonal wind between 50 and 70°S. Sensitivity simulations were used from 1960 to 2100 with fixed ODSs and GHGs at 1960 levels and a regression model that uses equivalent effective stratospheric chlorine and carbon dioxide equivalent radiative forcing as the regressors. The model simulates the spring and summer zonal wave-1 reasonably well, albeit with a slight bias in the phase and amplitude compared to observations. An eastward shift in the TCO and 10 hPa zonal wave-1 is associated with both decreasing ozone and increasing GHGs. Amplitude increases are associated with ozone decline and amplitude decreases with GHG increases. The influence of ODSs typically outweigh those by GHGs, partly due to the GHG influence on TCO phase at 50°S likely being hampered by the Andes. Therefore, over the 21st century, influence from ozone recovery causes a westward shift and a decrease in amplitude. An exception is at 70°S during spring, where the GHG influence is larger than that of ozone recovery, causing a continued eastward trend throughout the 21st century. Also, GHGs have the largest influence on the 10 hPa zonal wave-1 phase, but still only induce a small change in the wave-1 amplitude. Different local longitudes also experience different rates of ozone recovery due to the changes in phase of the zonal wave-1. The results from this study have important implications for understanding future ozone layer distribution in the Southern Hemisphere under changing GHG and ODS concentrations. Important future work would involve conducting a similar study using a large ensemble of models to gain more statistically significant results.","PeriodicalId":55419,"journal":{"name":"Journal of Southern Hemisphere Earth Systems Science","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Future changes in stratospheric quasi-stationary wave-1 in the extratropical southern hemisphere spring and summer as simulated by ACCESS-CCM\",\"authors\":\"K. Stone, A. Klekociuk, R. Schofield\",\"doi\":\"10.1071/es21002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seasonally dependent quasi-stationary planetary wave activity in the southern hemisphere influences the distribution of ozone within and near the equatorward edge of the stratospheric polar vortex. Accurate representation of this zonal asymmetry in ozone is important in the characterisation of stratospheric circulation and climate and their associated effects at the surface. In this study, we used the Australian Community and Climate Earth System Simulator-Chemistry Climate Model to investigate the influence of greenhouse gases (GHGs) and ozone depleting substances (ODSs) on the zonal asymmetry of total column ozone (TCO) and 10 hPa zonal wind between 50 and 70°S. Sensitivity simulations were used from 1960 to 2100 with fixed ODSs and GHGs at 1960 levels and a regression model that uses equivalent effective stratospheric chlorine and carbon dioxide equivalent radiative forcing as the regressors. The model simulates the spring and summer zonal wave-1 reasonably well, albeit with a slight bias in the phase and amplitude compared to observations. An eastward shift in the TCO and 10 hPa zonal wave-1 is associated with both decreasing ozone and increasing GHGs. Amplitude increases are associated with ozone decline and amplitude decreases with GHG increases. The influence of ODSs typically outweigh those by GHGs, partly due to the GHG influence on TCO phase at 50°S likely being hampered by the Andes. Therefore, over the 21st century, influence from ozone recovery causes a westward shift and a decrease in amplitude. An exception is at 70°S during spring, where the GHG influence is larger than that of ozone recovery, causing a continued eastward trend throughout the 21st century. Also, GHGs have the largest influence on the 10 hPa zonal wave-1 phase, but still only induce a small change in the wave-1 amplitude. Different local longitudes also experience different rates of ozone recovery due to the changes in phase of the zonal wave-1. The results from this study have important implications for understanding future ozone layer distribution in the Southern Hemisphere under changing GHG and ODS concentrations. Important future work would involve conducting a similar study using a large ensemble of models to gain more statistically significant results.\",\"PeriodicalId\":55419,\"journal\":{\"name\":\"Journal of Southern Hemisphere Earth Systems Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2021-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Southern Hemisphere Earth Systems Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1071/es21002\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Southern Hemisphere Earth Systems Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1071/es21002","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Future changes in stratospheric quasi-stationary wave-1 in the extratropical southern hemisphere spring and summer as simulated by ACCESS-CCM
Seasonally dependent quasi-stationary planetary wave activity in the southern hemisphere influences the distribution of ozone within and near the equatorward edge of the stratospheric polar vortex. Accurate representation of this zonal asymmetry in ozone is important in the characterisation of stratospheric circulation and climate and their associated effects at the surface. In this study, we used the Australian Community and Climate Earth System Simulator-Chemistry Climate Model to investigate the influence of greenhouse gases (GHGs) and ozone depleting substances (ODSs) on the zonal asymmetry of total column ozone (TCO) and 10 hPa zonal wind between 50 and 70°S. Sensitivity simulations were used from 1960 to 2100 with fixed ODSs and GHGs at 1960 levels and a regression model that uses equivalent effective stratospheric chlorine and carbon dioxide equivalent radiative forcing as the regressors. The model simulates the spring and summer zonal wave-1 reasonably well, albeit with a slight bias in the phase and amplitude compared to observations. An eastward shift in the TCO and 10 hPa zonal wave-1 is associated with both decreasing ozone and increasing GHGs. Amplitude increases are associated with ozone decline and amplitude decreases with GHG increases. The influence of ODSs typically outweigh those by GHGs, partly due to the GHG influence on TCO phase at 50°S likely being hampered by the Andes. Therefore, over the 21st century, influence from ozone recovery causes a westward shift and a decrease in amplitude. An exception is at 70°S during spring, where the GHG influence is larger than that of ozone recovery, causing a continued eastward trend throughout the 21st century. Also, GHGs have the largest influence on the 10 hPa zonal wave-1 phase, but still only induce a small change in the wave-1 amplitude. Different local longitudes also experience different rates of ozone recovery due to the changes in phase of the zonal wave-1. The results from this study have important implications for understanding future ozone layer distribution in the Southern Hemisphere under changing GHG and ODS concentrations. Important future work would involve conducting a similar study using a large ensemble of models to gain more statistically significant results.
期刊介绍:
The Journal of Southern Hemisphere Earth Systems Science (JSHESS) publishes broad areas of research with a distinct emphasis on the Southern Hemisphere. The scope of the Journal encompasses the study of the mean state, variability and change of the atmosphere, oceans, and land surface, including the cryosphere, from hemispheric to regional scales.
general circulation of the atmosphere and oceans,
climate change and variability ,
climate impacts,
climate modelling ,
past change in the climate system including palaeoclimate variability,
atmospheric dynamics,
synoptic meteorology,
mesoscale meteorology and severe weather,
tropical meteorology,
observation systems,
remote sensing of atmospheric, oceanic and land surface processes,
weather, climate and ocean prediction,
atmospheric and oceanic composition and chemistry,
physical oceanography,
air‐sea interactions,
coastal zone processes,
hydrology,
cryosphere‐atmosphere interactions,
land surface‐atmosphere interactions,
space weather, including impacts and mitigation on technology,
ionospheric, magnetospheric, auroral and space physics,
data assimilation applied to the above subject areas .
Authors are encouraged to contact the Editor for specific advice on whether the subject matter of a proposed submission is appropriate for the Journal of Southern Hemisphere Earth Systems Science.