优化航速和系泊时间的低排放泊位分配

IF 1.3 4区 工程技术 Q3 TRANSPORTATION SCIENCE & TECHNOLOGY
Zhi-Hua Hu
{"title":"优化航速和系泊时间的低排放泊位分配","authors":"Zhi-Hua Hu","doi":"10.3846/transport.2020.14080","DOIUrl":null,"url":null,"abstract":"To investigate the relations among delay times (weighted by vessels’ handling times), the emissions during the vessels’ sailing and mooring in a Berth Allocation Problem (BAP) where the berth times and sailing speeds are formulated as decision variables. The vessels’ delay times are computed comparing to the vessels’ Expected Departure Times (EDTs); the sailing emission is determined by the sailing speed and distance; the mooring emission is positive to the mooring time at terminal. Multi-objective mixed-integer programs are established, and the nonlinear functions between emissions and sailing speeds are transferred to linear ones by the Second-Order Cone Programming (SOCP) method. Solution methods are further developed based on e-constraint and stage-based methods by considering the preferences of objectives. Four groups of experiments are conducted to demonstrate the formulations, effects of vessels’ handling times and EDTs on the solutions, and the reduced emissions affected by the number of vessels in the schedules. Experimental results demonstrated that the efficiency purpose is not absolutely conflict with the environment purposes for some instances, and so they can be pursued at the same time; improving the vessels’ handling efficiency help expand the ranges of berth times and sailing speeds, resulting in reducing the delay times and emissions; advancing the EDTs can improve the terminal operators’ service quality to shipping companies, while the weighted delay times and emission may be increased.","PeriodicalId":23260,"journal":{"name":"Transport","volume":"35 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"LOW-EMISSION BERTH ALLOCATION BY OPTIMIZING SAILING SPEED AND MOORING TIME\",\"authors\":\"Zhi-Hua Hu\",\"doi\":\"10.3846/transport.2020.14080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To investigate the relations among delay times (weighted by vessels’ handling times), the emissions during the vessels’ sailing and mooring in a Berth Allocation Problem (BAP) where the berth times and sailing speeds are formulated as decision variables. The vessels’ delay times are computed comparing to the vessels’ Expected Departure Times (EDTs); the sailing emission is determined by the sailing speed and distance; the mooring emission is positive to the mooring time at terminal. Multi-objective mixed-integer programs are established, and the nonlinear functions between emissions and sailing speeds are transferred to linear ones by the Second-Order Cone Programming (SOCP) method. Solution methods are further developed based on e-constraint and stage-based methods by considering the preferences of objectives. Four groups of experiments are conducted to demonstrate the formulations, effects of vessels’ handling times and EDTs on the solutions, and the reduced emissions affected by the number of vessels in the schedules. Experimental results demonstrated that the efficiency purpose is not absolutely conflict with the environment purposes for some instances, and so they can be pursued at the same time; improving the vessels’ handling efficiency help expand the ranges of berth times and sailing speeds, resulting in reducing the delay times and emissions; advancing the EDTs can improve the terminal operators’ service quality to shipping companies, while the weighted delay times and emission may be increased.\",\"PeriodicalId\":23260,\"journal\":{\"name\":\"Transport\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3846/transport.2020.14080\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/transport.2020.14080","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

以泊位分配问题(Berth Allocation Problem, BAP)为研究对象,以泊位时间和航行速度为决策变量,研究船舶装卸时间加权后的延迟时间、船舶航行和系泊过程中的排放之间的关系。与船舶的预期离港时间(EDTs)比较,计算船舶的延误时间;航行发射由航行速度和距离决定;系泊辐射与终端系泊时间呈正相关。建立了多目标混合整数规划,利用二阶锥规划(SOCP)方法将发射量与航速之间的非线性函数转化为线性函数。在e约束法和阶段法的基础上,考虑目标的偏好,进一步发展了求解方法。我们进行了四组实验,以证明配方、船舶处理时间和edt对溶液的影响,以及时间表中船舶数量对减少排放的影响。实验结果表明,在某些情况下,效率目的与环境目的并不绝对冲突,可以同时追求;提高船舶装卸效率有助于扩大泊位时间和航行速度的范围,从而减少延误时间和排放;推进EDTs可以提高码头运营商对航运公司的服务质量,但可能会增加加权延迟时间和排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LOW-EMISSION BERTH ALLOCATION BY OPTIMIZING SAILING SPEED AND MOORING TIME
To investigate the relations among delay times (weighted by vessels’ handling times), the emissions during the vessels’ sailing and mooring in a Berth Allocation Problem (BAP) where the berth times and sailing speeds are formulated as decision variables. The vessels’ delay times are computed comparing to the vessels’ Expected Departure Times (EDTs); the sailing emission is determined by the sailing speed and distance; the mooring emission is positive to the mooring time at terminal. Multi-objective mixed-integer programs are established, and the nonlinear functions between emissions and sailing speeds are transferred to linear ones by the Second-Order Cone Programming (SOCP) method. Solution methods are further developed based on e-constraint and stage-based methods by considering the preferences of objectives. Four groups of experiments are conducted to demonstrate the formulations, effects of vessels’ handling times and EDTs on the solutions, and the reduced emissions affected by the number of vessels in the schedules. Experimental results demonstrated that the efficiency purpose is not absolutely conflict with the environment purposes for some instances, and so they can be pursued at the same time; improving the vessels’ handling efficiency help expand the ranges of berth times and sailing speeds, resulting in reducing the delay times and emissions; advancing the EDTs can improve the terminal operators’ service quality to shipping companies, while the weighted delay times and emission may be increased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport
Transport Engineering-Mechanical Engineering
CiteScore
3.40
自引率
5.90%
发文量
19
审稿时长
4 months
期刊介绍: At present, transport is one of the key branches playing a crucial role in the development of economy. Reliable and properly organized transport services are required for a professional performance of industry, construction and agriculture. The public mood and efficiency of work also largely depend on the valuable functions of a carefully chosen transport system. A steady increase in transportation is accompanied by growing demands for a higher quality of transport services and optimum efficiency of transport performance. Currently, joint efforts taken by the transport experts and governing institutions of the country are required to develop and enhance the performance of the national transport system conducting theoretical and empirical research. TRANSPORT is an international peer-reviewed journal covering main aspects of transport and providing a source of information for the engineer and the applied scientist. The journal TRANSPORT publishes articles in the fields of: transport policy; fundamentals of the transport system; technology for carrying passengers and freight using road, railway, inland waterways, sea and air transport; technology for multimodal transportation and logistics; loading technology; roads, railways; airports, ports, transport terminals; traffic safety and environment protection; design, manufacture and exploitation of motor vehicles; pipeline transport; transport energetics; fuels, lubricants and maintenance materials; teamwork of customs and transport; transport information technologies; transport economics and management; transport standards; transport educology and history, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信