A. Zhdanov, A. Dolganov, Dario Zanca, V. I. Borisov, E. Luchian, L. Dorosinsky
{"title":"使用机器学习方法评估视网膜营养不良医师决策支持算法的有效性","authors":"A. Zhdanov, A. Dolganov, Dario Zanca, V. I. Borisov, E. Luchian, L. Dorosinsky","doi":"10.18287/2412-6179-co-1124","DOIUrl":null,"url":null,"abstract":"Electroretinography is a method of electrophysiological testing, which allows diagnosing diseases associated with disorders of the vascular structures of the retina. The classical analysis of the electroretinogram is based on assessing four parameters of the amplitude-time representation and often needs to be specified further using alternative diagnostic methods. This study proposes the use of an original physician decision support algorithm for diagnosing retinal dystrophy. The proposed algorithm is based on machine learning methods and uses parameters extracted from the wavelet scalogram of pediatric and adult electroretinogram signals. The study also uses a labeled database of pediatric and adult electroretinogram signals recorded using a computerized electrophysiological workstation EP-1000 (Tomey GmbH) at the IRTC Eye Microsurgery Ekaterinburg Center. The scientific novelty of this study consists in the development of special mathematical and algorithmic software for analyzing a procedure for extracting wavelet scalogram parameters of the electroretinogram signal using the cwt function of the PyWT. The basis function is a Gaussian wavelet of order 8. Also, the scientific novelty includes the development of an algorithm for analyzing electroretinogram signals that implements the classification of adult (pediatric) electroretinogram signals 19 (20) percent more accurately than classical analysis.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of the effectiveness of the decision support algorithm for physicians in retinal dystrophy using machine learning methods\",\"authors\":\"A. Zhdanov, A. Dolganov, Dario Zanca, V. I. Borisov, E. Luchian, L. Dorosinsky\",\"doi\":\"10.18287/2412-6179-co-1124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroretinography is a method of electrophysiological testing, which allows diagnosing diseases associated with disorders of the vascular structures of the retina. The classical analysis of the electroretinogram is based on assessing four parameters of the amplitude-time representation and often needs to be specified further using alternative diagnostic methods. This study proposes the use of an original physician decision support algorithm for diagnosing retinal dystrophy. The proposed algorithm is based on machine learning methods and uses parameters extracted from the wavelet scalogram of pediatric and adult electroretinogram signals. The study also uses a labeled database of pediatric and adult electroretinogram signals recorded using a computerized electrophysiological workstation EP-1000 (Tomey GmbH) at the IRTC Eye Microsurgery Ekaterinburg Center. The scientific novelty of this study consists in the development of special mathematical and algorithmic software for analyzing a procedure for extracting wavelet scalogram parameters of the electroretinogram signal using the cwt function of the PyWT. The basis function is a Gaussian wavelet of order 8. Also, the scientific novelty includes the development of an algorithm for analyzing electroretinogram signals that implements the classification of adult (pediatric) electroretinogram signals 19 (20) percent more accurately than classical analysis.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1124\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1124","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of the effectiveness of the decision support algorithm for physicians in retinal dystrophy using machine learning methods
Electroretinography is a method of electrophysiological testing, which allows diagnosing diseases associated with disorders of the vascular structures of the retina. The classical analysis of the electroretinogram is based on assessing four parameters of the amplitude-time representation and often needs to be specified further using alternative diagnostic methods. This study proposes the use of an original physician decision support algorithm for diagnosing retinal dystrophy. The proposed algorithm is based on machine learning methods and uses parameters extracted from the wavelet scalogram of pediatric and adult electroretinogram signals. The study also uses a labeled database of pediatric and adult electroretinogram signals recorded using a computerized electrophysiological workstation EP-1000 (Tomey GmbH) at the IRTC Eye Microsurgery Ekaterinburg Center. The scientific novelty of this study consists in the development of special mathematical and algorithmic software for analyzing a procedure for extracting wavelet scalogram parameters of the electroretinogram signal using the cwt function of the PyWT. The basis function is a Gaussian wavelet of order 8. Also, the scientific novelty includes the development of an algorithm for analyzing electroretinogram signals that implements the classification of adult (pediatric) electroretinogram signals 19 (20) percent more accurately than classical analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.