Ana Gledovic, D. Bajuk-Bogdanović, S. Uskoković-Marković, Leposava Pavun, S. Savić, Aleksandra Janošević-Ležaić
{"title":"低能量纳米乳液作为抗氧化皮肤保护外用配方中精油的载体","authors":"Ana Gledovic, D. Bajuk-Bogdanović, S. Uskoković-Marković, Leposava Pavun, S. Savić, Aleksandra Janošević-Ležaić","doi":"10.2298/hemind210509004g","DOIUrl":null,"url":null,"abstract":"In this study several essential oils (EOs): basil - BA, lemon balm - LB and oregano - OR were incorporated into nanoemulsions (NEs) as prospective carriers for natural and sensitive bioactives. NEs were prepared via the phase inversion composition (PIC) method, which is an energy-efficient cold process. Physicochemical stability of NEs was confirmed by particle size distribution analysis, electrical conductivity and pH value measurements, as well as by optical microscopy observations. The type of EO and the surfactant and oil mix concentration were found to be crucial factors governing the NE properties and stability. Raman spectra of the EOs confirmed main active ingredients and provided detection of interactions with the nanocarrier, which is a novel application of this technique. The antioxidant activity towards DPPH radical in methanol was concentration-dependent with a similar trend for individual oils and oil-loaded NEs (OR> LB> BA). However, the ABTS test in an aqueous medium revealed notable change in the order of activity after EO nanonisation at higher EO concentrations. Overall, it was found that OR-NE was the most effective and stable system, since OR acted as a co-stabiliser in the NE formulation, and its remarkably high antioxidant activity was successfully preserved during 6 months of storage.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low energy nanoemulsions as carriers for essential oils in topical formulations for antioxidant skin protection\",\"authors\":\"Ana Gledovic, D. Bajuk-Bogdanović, S. Uskoković-Marković, Leposava Pavun, S. Savić, Aleksandra Janošević-Ležaić\",\"doi\":\"10.2298/hemind210509004g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study several essential oils (EOs): basil - BA, lemon balm - LB and oregano - OR were incorporated into nanoemulsions (NEs) as prospective carriers for natural and sensitive bioactives. NEs were prepared via the phase inversion composition (PIC) method, which is an energy-efficient cold process. Physicochemical stability of NEs was confirmed by particle size distribution analysis, electrical conductivity and pH value measurements, as well as by optical microscopy observations. The type of EO and the surfactant and oil mix concentration were found to be crucial factors governing the NE properties and stability. Raman spectra of the EOs confirmed main active ingredients and provided detection of interactions with the nanocarrier, which is a novel application of this technique. The antioxidant activity towards DPPH radical in methanol was concentration-dependent with a similar trend for individual oils and oil-loaded NEs (OR> LB> BA). However, the ABTS test in an aqueous medium revealed notable change in the order of activity after EO nanonisation at higher EO concentrations. Overall, it was found that OR-NE was the most effective and stable system, since OR acted as a co-stabiliser in the NE formulation, and its remarkably high antioxidant activity was successfully preserved during 6 months of storage.\",\"PeriodicalId\":9933,\"journal\":{\"name\":\"Chemical Industry\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.2298/hemind210509004g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.2298/hemind210509004g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low energy nanoemulsions as carriers for essential oils in topical formulations for antioxidant skin protection
In this study several essential oils (EOs): basil - BA, lemon balm - LB and oregano - OR were incorporated into nanoemulsions (NEs) as prospective carriers for natural and sensitive bioactives. NEs were prepared via the phase inversion composition (PIC) method, which is an energy-efficient cold process. Physicochemical stability of NEs was confirmed by particle size distribution analysis, electrical conductivity and pH value measurements, as well as by optical microscopy observations. The type of EO and the surfactant and oil mix concentration were found to be crucial factors governing the NE properties and stability. Raman spectra of the EOs confirmed main active ingredients and provided detection of interactions with the nanocarrier, which is a novel application of this technique. The antioxidant activity towards DPPH radical in methanol was concentration-dependent with a similar trend for individual oils and oil-loaded NEs (OR> LB> BA). However, the ABTS test in an aqueous medium revealed notable change in the order of activity after EO nanonisation at higher EO concentrations. Overall, it was found that OR-NE was the most effective and stable system, since OR acted as a co-stabiliser in the NE formulation, and its remarkably high antioxidant activity was successfully preserved during 6 months of storage.