N. Sabalisck, C. Guzmán-Afonso, C. González-Silgo, M. Torres, J. Pasán, J. del-Castillo, D. Ramos-Hernández, A. Hernández-Suárez, L. Mestres
{"title":"Er3+和Yb3+掺杂α-LiNH4SO4多型材料的结构和热稳定性","authors":"N. Sabalisck, C. Guzmán-Afonso, C. González-Silgo, M. Torres, J. Pasán, J. del-Castillo, D. Ramos-Hernández, A. Hernández-Suárez, L. Mestres","doi":"10.1107/S2052520616019028","DOIUrl":null,"url":null,"abstract":"In order to clarify the polymorphism in the lithium sulfate family, LiREx(NH4)1 − xSO4 (0.5 ≤ x ≤ 4.0 mol%, nominal value; RE = Er3+, Yb3+ and Dy3+) crystals were grown from aqueous solution by slow evaporation between 298 and 313 K. The doping of the samples allowed us to obtain two polymorphic forms, α and β, of LiNH4SO4 (LAS). By means of X-ray diffraction (XRD) in single crystals, we determined the crystal structures of two new α-polytypes, which we have named α1- and α2-LAS. They present the same space group P21/c and the following relation among their lattice parameters: a2 = −c1, b2 = −b1, c2 = −2a1 − c1. In order to evaluate the stability of the new α-polytypes, we performed thermal analysis, X-ray diffraction and dielectric spectroscopy on single crystals and polycrystalline samples over the cyclic temperature range: 190 → 575 → 190 K. The results obtained by all the techniques used in this study demonstrate that α-polytypes are stable across a wide range of temperatures and they show an irreversible phase transition to the paraelectric β-phase above 500 K. In addition, a comparative study of α- and β-polytypes shows that both polymorphic structures have a common axis, with a possible intergrowth that facilitates their coexistence and promotes the reconstructive α → β transition. This intergrowth was related to small anomalies detected between 240 and 260 K, in crystals with an α-habit.","PeriodicalId":6887,"journal":{"name":"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry","volume":"21 1","pages":"122-133"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Structures and thermal stability of the α-LiNH4SO4 polytypes doped with Er3+ and Yb3+\",\"authors\":\"N. Sabalisck, C. Guzmán-Afonso, C. González-Silgo, M. Torres, J. Pasán, J. del-Castillo, D. Ramos-Hernández, A. Hernández-Suárez, L. Mestres\",\"doi\":\"10.1107/S2052520616019028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to clarify the polymorphism in the lithium sulfate family, LiREx(NH4)1 − xSO4 (0.5 ≤ x ≤ 4.0 mol%, nominal value; RE = Er3+, Yb3+ and Dy3+) crystals were grown from aqueous solution by slow evaporation between 298 and 313 K. The doping of the samples allowed us to obtain two polymorphic forms, α and β, of LiNH4SO4 (LAS). By means of X-ray diffraction (XRD) in single crystals, we determined the crystal structures of two new α-polytypes, which we have named α1- and α2-LAS. They present the same space group P21/c and the following relation among their lattice parameters: a2 = −c1, b2 = −b1, c2 = −2a1 − c1. In order to evaluate the stability of the new α-polytypes, we performed thermal analysis, X-ray diffraction and dielectric spectroscopy on single crystals and polycrystalline samples over the cyclic temperature range: 190 → 575 → 190 K. The results obtained by all the techniques used in this study demonstrate that α-polytypes are stable across a wide range of temperatures and they show an irreversible phase transition to the paraelectric β-phase above 500 K. In addition, a comparative study of α- and β-polytypes shows that both polymorphic structures have a common axis, with a possible intergrowth that facilitates their coexistence and promotes the reconstructive α → β transition. This intergrowth was related to small anomalies detected between 240 and 260 K, in crystals with an α-habit.\",\"PeriodicalId\":6887,\"journal\":{\"name\":\"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry\",\"volume\":\"21 1\",\"pages\":\"122-133\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/S2052520616019028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S2052520616019028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structures and thermal stability of the α-LiNH4SO4 polytypes doped with Er3+ and Yb3+
In order to clarify the polymorphism in the lithium sulfate family, LiREx(NH4)1 − xSO4 (0.5 ≤ x ≤ 4.0 mol%, nominal value; RE = Er3+, Yb3+ and Dy3+) crystals were grown from aqueous solution by slow evaporation between 298 and 313 K. The doping of the samples allowed us to obtain two polymorphic forms, α and β, of LiNH4SO4 (LAS). By means of X-ray diffraction (XRD) in single crystals, we determined the crystal structures of two new α-polytypes, which we have named α1- and α2-LAS. They present the same space group P21/c and the following relation among their lattice parameters: a2 = −c1, b2 = −b1, c2 = −2a1 − c1. In order to evaluate the stability of the new α-polytypes, we performed thermal analysis, X-ray diffraction and dielectric spectroscopy on single crystals and polycrystalline samples over the cyclic temperature range: 190 → 575 → 190 K. The results obtained by all the techniques used in this study demonstrate that α-polytypes are stable across a wide range of temperatures and they show an irreversible phase transition to the paraelectric β-phase above 500 K. In addition, a comparative study of α- and β-polytypes shows that both polymorphic structures have a common axis, with a possible intergrowth that facilitates their coexistence and promotes the reconstructive α → β transition. This intergrowth was related to small anomalies detected between 240 and 260 K, in crystals with an α-habit.