基于迭代的Sylvester系统泊松求解器

IF 1 4区 数学
Michael Franklin, A. Nadim
{"title":"基于迭代的Sylvester系统泊松求解器","authors":"Michael Franklin, A. Nadim","doi":"10.4236/AM.2018.96052","DOIUrl":null,"url":null,"abstract":"We present an iterative scheme for solving Poisson’s equation in 2D. Using finite differences, we discretize the equation into a Sylvester system, AU +UB = F, involving tridiagonal matrices A and B. The iterations occur on this Sylvester system directly after introducing a deflation-type parameter that enables optimized convergence. Analytical bounds are obtained on the spectral radii of the iteration matrices. Our method is comparable to Successive Over-Relaxation (SOR) and amenable to compact programming via vector/array operations. It can also be implemented within a multigrid framework with considerable improvement in performance as shown herein.","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Poisson Solver Based on Iterations on a Sylvester System\",\"authors\":\"Michael Franklin, A. Nadim\",\"doi\":\"10.4236/AM.2018.96052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an iterative scheme for solving Poisson’s equation in 2D. Using finite differences, we discretize the equation into a Sylvester system, AU +UB = F, involving tridiagonal matrices A and B. The iterations occur on this Sylvester system directly after introducing a deflation-type parameter that enables optimized convergence. Analytical bounds are obtained on the spectral radii of the iteration matrices. Our method is comparable to Successive Over-Relaxation (SOR) and amenable to compact programming via vector/array operations. It can also be implemented within a multigrid framework with considerable improvement in performance as shown herein.\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4236/AM.2018.96052\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4236/AM.2018.96052","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给出了二维泊松方程的迭代解。利用有限差分,我们将方程离散成一个Sylvester系统,AU +UB = F,涉及三对角线矩阵a和b。在引入一个使最优化收敛的通缩型参数后,迭代直接发生在Sylvester系统上。在迭代矩阵的谱半径上得到了解析界。我们的方法可与连续过度松弛(SOR)相比较,并且适用于通过向量/数组操作进行紧凑规划。它也可以在多网格框架中实现,并在性能上有相当大的改进,如下所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Poisson Solver Based on Iterations on a Sylvester System
We present an iterative scheme for solving Poisson’s equation in 2D. Using finite differences, we discretize the equation into a Sylvester system, AU +UB = F, involving tridiagonal matrices A and B. The iterations occur on this Sylvester system directly after introducing a deflation-type parameter that enables optimized convergence. Analytical bounds are obtained on the spectral radii of the iteration matrices. Our method is comparable to Successive Over-Relaxation (SOR) and amenable to compact programming via vector/array operations. It can also be implemented within a multigrid framework with considerable improvement in performance as shown herein.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.00%
发文量
33
期刊介绍: Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects. The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry. Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信