pH,牛奶和乳制品加工的基础:综述

Q2 Agricultural and Biological Sciences
Tugce Aydogdu, J. O’Mahony, N. McCarthy
{"title":"pH,牛奶和乳制品加工的基础:综述","authors":"Tugce Aydogdu, J. O’Mahony, N. McCarthy","doi":"10.3390/dairy4030026","DOIUrl":null,"url":null,"abstract":"The ability to measure and capture real-time unit operational data has significant benefits during dairy processing, whether it is the basics, such as measuring temperature, pressure, and flow rates, or more recent developments in the case of in-line viscosity and product-compositional measurements. This rapid data collection has helped increase profitability by reducing energy costs, minimizing product loss, and allowing automated control. Advances in technology have allowed for in-line measurements of the composition and some physical attributes such as particle size and viscosity; however, an attribute that spans both compositional and physical attributes is pH, directly influenced by composition but also environments, such as temperature and dry matter content. pH is measured for a plethora of reasons, such as a measure of milk quality (microbial spoilage), acidification of casein, cheese production, maintaining optimum conditions during protein hydrolysis, etc. However, very little is published on the fundamentals of pH and pH measurement in dairy processing; rather, it is usually a cause-and-effect phenomenon. This review visits one of the oldest analytical considerations in the dairy industry and re-examines how it is affected by product composition and processing conditions.","PeriodicalId":11001,"journal":{"name":"Dairy Science & Technology","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"pH, the Fundamentals for Milk and Dairy Processing: A Review\",\"authors\":\"Tugce Aydogdu, J. O’Mahony, N. McCarthy\",\"doi\":\"10.3390/dairy4030026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to measure and capture real-time unit operational data has significant benefits during dairy processing, whether it is the basics, such as measuring temperature, pressure, and flow rates, or more recent developments in the case of in-line viscosity and product-compositional measurements. This rapid data collection has helped increase profitability by reducing energy costs, minimizing product loss, and allowing automated control. Advances in technology have allowed for in-line measurements of the composition and some physical attributes such as particle size and viscosity; however, an attribute that spans both compositional and physical attributes is pH, directly influenced by composition but also environments, such as temperature and dry matter content. pH is measured for a plethora of reasons, such as a measure of milk quality (microbial spoilage), acidification of casein, cheese production, maintaining optimum conditions during protein hydrolysis, etc. However, very little is published on the fundamentals of pH and pH measurement in dairy processing; rather, it is usually a cause-and-effect phenomenon. This review visits one of the oldest analytical considerations in the dairy industry and re-examines how it is affected by product composition and processing conditions.\",\"PeriodicalId\":11001,\"journal\":{\"name\":\"Dairy Science & Technology\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dairy Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dairy4030026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dairy Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dairy4030026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

测量和捕获实时单元操作数据的能力在乳制品加工过程中具有显著的优势,无论是测量温度、压力和流速等基础数据,还是最近发展起来的在线粘度和产品成分测量。这种快速的数据收集有助于通过降低能源成本、最大限度地减少产品损失和实现自动化控制来提高盈利能力。技术的进步已经允许在线测量成分和一些物理属性,如粒度和粘度;然而,一个跨越成分和物理属性的属性是pH值,它直接受到成分和环境(如温度和干物质含量)的影响。测量pH值的原因有很多,比如衡量牛奶质量(微生物变质)、酪蛋白酸化、奶酪生产、在蛋白质水解过程中保持最佳条件等。然而,关于乳品加工中pH值和pH值测量的基础知识很少发表;相反,它通常是一种因果现象。这篇综述访问了乳制品行业最古老的分析因素之一,并重新审视了它是如何受到产品成分和加工条件的影响的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
pH, the Fundamentals for Milk and Dairy Processing: A Review
The ability to measure and capture real-time unit operational data has significant benefits during dairy processing, whether it is the basics, such as measuring temperature, pressure, and flow rates, or more recent developments in the case of in-line viscosity and product-compositional measurements. This rapid data collection has helped increase profitability by reducing energy costs, minimizing product loss, and allowing automated control. Advances in technology have allowed for in-line measurements of the composition and some physical attributes such as particle size and viscosity; however, an attribute that spans both compositional and physical attributes is pH, directly influenced by composition but also environments, such as temperature and dry matter content. pH is measured for a plethora of reasons, such as a measure of milk quality (microbial spoilage), acidification of casein, cheese production, maintaining optimum conditions during protein hydrolysis, etc. However, very little is published on the fundamentals of pH and pH measurement in dairy processing; rather, it is usually a cause-and-effect phenomenon. This review visits one of the oldest analytical considerations in the dairy industry and re-examines how it is affected by product composition and processing conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dairy Science & Technology
Dairy Science & Technology 农林科学-食品科技
CiteScore
2.30
自引率
0.00%
发文量
0
审稿时长
2 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信