Binghui Li, Dejun Liu, Y. Semenova, G. Farrell, H. Chan, Qiang Wu
{"title":"SMS纤维结构磁流变智能复合材料应力/应变传感特性研究","authors":"Binghui Li, Dejun Liu, Y. Semenova, G. Farrell, H. Chan, Qiang Wu","doi":"10.1109/TENCON.2015.7372785","DOIUrl":null,"url":null,"abstract":"A single-mode-multimode-single-mode (SMS) fiber structure based stress/strain sensor is applied to monitor internal stress variations in magnetorhelogical elastomers (MREs) matrix. The liquid silicone rubber mixture with embedded fibers, i.e. SMS fiber and Fiber-Bragg-Grating (FBG), are enclosed into an aluminum mould for curing within a permanent magnet field at room temperature for 5 days. Then the cured sample is utilized for internal stress/strain measurement by applying different magnetic field intensity, of the results show that SMS structure has higher stress/strain sensitivity than that of FBG when a variable magnetic flux density was applied the MRE. The present investigation shows capability of using SMS sensor for online feedback and operation of MREs materials and commercial potential in medical and healthcare applications.","PeriodicalId":22200,"journal":{"name":"TENCON 2015 - 2015 IEEE Region 10 Conference","volume":"47 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigation on stress/strain sensing characteristics for magnetorheological smart composite material by a SMS fiber structure\",\"authors\":\"Binghui Li, Dejun Liu, Y. Semenova, G. Farrell, H. Chan, Qiang Wu\",\"doi\":\"10.1109/TENCON.2015.7372785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A single-mode-multimode-single-mode (SMS) fiber structure based stress/strain sensor is applied to monitor internal stress variations in magnetorhelogical elastomers (MREs) matrix. The liquid silicone rubber mixture with embedded fibers, i.e. SMS fiber and Fiber-Bragg-Grating (FBG), are enclosed into an aluminum mould for curing within a permanent magnet field at room temperature for 5 days. Then the cured sample is utilized for internal stress/strain measurement by applying different magnetic field intensity, of the results show that SMS structure has higher stress/strain sensitivity than that of FBG when a variable magnetic flux density was applied the MRE. The present investigation shows capability of using SMS sensor for online feedback and operation of MREs materials and commercial potential in medical and healthcare applications.\",\"PeriodicalId\":22200,\"journal\":{\"name\":\"TENCON 2015 - 2015 IEEE Region 10 Conference\",\"volume\":\"47 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2015 - 2015 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2015.7372785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2015 - 2015 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2015.7372785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation on stress/strain sensing characteristics for magnetorheological smart composite material by a SMS fiber structure
A single-mode-multimode-single-mode (SMS) fiber structure based stress/strain sensor is applied to monitor internal stress variations in magnetorhelogical elastomers (MREs) matrix. The liquid silicone rubber mixture with embedded fibers, i.e. SMS fiber and Fiber-Bragg-Grating (FBG), are enclosed into an aluminum mould for curing within a permanent magnet field at room temperature for 5 days. Then the cured sample is utilized for internal stress/strain measurement by applying different magnetic field intensity, of the results show that SMS structure has higher stress/strain sensitivity than that of FBG when a variable magnetic flux density was applied the MRE. The present investigation shows capability of using SMS sensor for online feedback and operation of MREs materials and commercial potential in medical and healthcare applications.