基于特征值分解的彩色信号多通道盲反卷积

P. Georgiev, A. Cichocki
{"title":"基于特征值分解的彩色信号多通道盲反卷积","authors":"P. Georgiev, A. Cichocki","doi":"10.1109/SSP.2001.955275","DOIUrl":null,"url":null,"abstract":"We prove that a MIMO (multiple input multiple output) blind deconvolution problem for n colored uncorrelated signals can be converted to n SIMO (single input multiple output) problems, using eigenvalue decomposition of a special covariance matrix, depending on L-dimensional parameter b, if appropriate covariance matrices have sets of eigenvalues with empty pairwise intersection. We present a sufficient condition for this conversion and discuss how to End such parameters. We prove that the parameters b for which this is possible, form an open subset of IR/sup L/, whose complement has a Lebesgue measure zero.","PeriodicalId":70952,"journal":{"name":"信号处理","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multichannel blind deconvolution of colored signals via eigenvalue decomposition\",\"authors\":\"P. Georgiev, A. Cichocki\",\"doi\":\"10.1109/SSP.2001.955275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a MIMO (multiple input multiple output) blind deconvolution problem for n colored uncorrelated signals can be converted to n SIMO (single input multiple output) problems, using eigenvalue decomposition of a special covariance matrix, depending on L-dimensional parameter b, if appropriate covariance matrices have sets of eigenvalues with empty pairwise intersection. We present a sufficient condition for this conversion and discuss how to End such parameters. We prove that the parameters b for which this is possible, form an open subset of IR/sup L/, whose complement has a Lebesgue measure zero.\",\"PeriodicalId\":70952,\"journal\":{\"name\":\"信号处理\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"信号处理\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2001.955275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/SSP.2001.955275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们证明了n个彩色不相关信号的MIMO(多输入多输出)盲反卷积问题可以转化为n个SIMO(单输入多输出)问题,使用依赖于l维参数b的特殊协方差矩阵的特征值分解,如果适当的协方差矩阵具有空成对相交的特征值集。我们给出了这种转换的充分条件,并讨论了如何结束这种参数。我们证明了这是可能的参数b,形成IR/sup L/的一个开放子集,其补具有勒贝格测度为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multichannel blind deconvolution of colored signals via eigenvalue decomposition
We prove that a MIMO (multiple input multiple output) blind deconvolution problem for n colored uncorrelated signals can be converted to n SIMO (single input multiple output) problems, using eigenvalue decomposition of a special covariance matrix, depending on L-dimensional parameter b, if appropriate covariance matrices have sets of eigenvalues with empty pairwise intersection. We present a sufficient condition for this conversion and discuss how to End such parameters. We prove that the parameters b for which this is possible, form an open subset of IR/sup L/, whose complement has a Lebesgue measure zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
5812
期刊介绍: Journal of Signal Processing is an academic journal supervised by China Association for Science and Technology and sponsored by China Institute of Electronics. The journal is an academic journal that reflects the latest research results and technological progress in the field of signal processing and related disciplines. It covers academic papers and review articles on new theories, new ideas, and new technologies in the field of signal processing. The journal aims to provide a platform for academic exchanges for scientific researchers and engineering and technical personnel engaged in basic research and applied research in signal processing, thereby promoting the development of information science and technology. At present, the journal has been included in the three major domestic core journal databases "China Science Citation Database (CSCD), China Science and Technology Core Journals (CSTPCD), Chinese Core Journals Overview" and Coaj. It is also included in many foreign databases such as Scopus, CSA, EBSCO host, INSPEC, JST, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信