{"title":"统计关系学习:最新研究综述","authors":"Muhamet Kastrati, M. Biba","doi":"10.30931/jetas.594586","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to review the state-of-the-art of statistical relational learning (SRL) models developed to deal with machine learning and data mining in relational domains in presence of missing, partially observed, and/or noisy data. It starts by giving a general overview of conventional graphical models, first-order logic and inductive logic programming approaches as needed for background. The historical development of each SRL key model is critically reviewed. The study also focuses on the practical application of SRL techniques to a broad variety of areas and their limitations.","PeriodicalId":7757,"journal":{"name":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STATISTICAL RELATIONAL LEARNING: A STATE-OF-THE-ART REVIEW\",\"authors\":\"Muhamet Kastrati, M. Biba\",\"doi\":\"10.30931/jetas.594586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to review the state-of-the-art of statistical relational learning (SRL) models developed to deal with machine learning and data mining in relational domains in presence of missing, partially observed, and/or noisy data. It starts by giving a general overview of conventional graphical models, first-order logic and inductive logic programming approaches as needed for background. The historical development of each SRL key model is critically reviewed. The study also focuses on the practical application of SRL techniques to a broad variety of areas and their limitations.\",\"PeriodicalId\":7757,\"journal\":{\"name\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30931/jetas.594586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30931/jetas.594586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
STATISTICAL RELATIONAL LEARNING: A STATE-OF-THE-ART REVIEW
The objective of this paper is to review the state-of-the-art of statistical relational learning (SRL) models developed to deal with machine learning and data mining in relational domains in presence of missing, partially observed, and/or noisy data. It starts by giving a general overview of conventional graphical models, first-order logic and inductive logic programming approaches as needed for background. The historical development of each SRL key model is critically reviewed. The study also focuses on the practical application of SRL techniques to a broad variety of areas and their limitations.