Penanganan Imputasi缺失值帕达数据时间序列邓安Menggunakan方法数据挖掘

Muhammad Riko Anshori Prasetya, Ari Priyatno, Nurhaeni
{"title":"Penanganan Imputasi缺失值帕达数据时间序列邓安Menggunakan方法数据挖掘","authors":"Muhammad Riko Anshori Prasetya, Ari Priyatno, Nurhaeni","doi":"10.37034/jidt.v5i2.324","DOIUrl":null,"url":null,"abstract":"Pengumpulan data untuk perkiraan cuaca menjadi sangat penting untuk dilakukan untuk meningkatkan kualitas dari perkiraan cuaca tetapi seringkali data yang didapatkan untuk melakukan perkiraan cuaca tersebut terdapat data yang hilang (missing values). Untuk mengatasi permasalahan missing values, metode yang paling umum dilakukan adalah dengan melakukan sebuah imputasi terhadap missing values tersebut. Agar dapat melakukan imputasi pada data yang terdapat missing values tersebut dibutuhkan suatu metode imputasi. Pada penelitian ini, metode imputasi yang dilakukan adalah dengan menggunakan metode konvensional yaitu dengan menggunakan mean dan nilai maksimum dan metode data mining yang menggunakan KNN dan Neural Network. Dari ujicoba yang dilakukan didapatkan jika Metode KNN memiliki nilai RMSE yang terendah.","PeriodicalId":33488,"journal":{"name":"JTIT Jurnal Teknologi Informasi dan Terapan","volume":"72 4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penanganan Imputasi Missing Values pada Data Time Series dengan Menggunakan Metode Data Mining\",\"authors\":\"Muhammad Riko Anshori Prasetya, Ari Priyatno, Nurhaeni\",\"doi\":\"10.37034/jidt.v5i2.324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pengumpulan data untuk perkiraan cuaca menjadi sangat penting untuk dilakukan untuk meningkatkan kualitas dari perkiraan cuaca tetapi seringkali data yang didapatkan untuk melakukan perkiraan cuaca tersebut terdapat data yang hilang (missing values). Untuk mengatasi permasalahan missing values, metode yang paling umum dilakukan adalah dengan melakukan sebuah imputasi terhadap missing values tersebut. Agar dapat melakukan imputasi pada data yang terdapat missing values tersebut dibutuhkan suatu metode imputasi. Pada penelitian ini, metode imputasi yang dilakukan adalah dengan menggunakan metode konvensional yaitu dengan menggunakan mean dan nilai maksimum dan metode data mining yang menggunakan KNN dan Neural Network. Dari ujicoba yang dilakukan didapatkan jika Metode KNN memiliki nilai RMSE yang terendah.\",\"PeriodicalId\":33488,\"journal\":{\"name\":\"JTIT Jurnal Teknologi Informasi dan Terapan\",\"volume\":\"72 4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JTIT Jurnal Teknologi Informasi dan Terapan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37034/jidt.v5i2.324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JTIT Jurnal Teknologi Informasi dan Terapan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37034/jidt.v5i2.324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

天气预报的数据收集对于提高天气预报的质量是至关重要的,但用于天气预报的数据往往是丢失的数据。为了解决损失评估的问题,最常见的方法是对损失估值进行指责。要将丢失的价值数据进行干预,需要一种转移的方法。在这项研究中,使用传统方法的方法是使用最大平均值和值,以及使用KNN和神经网络的数据挖掘方法。如果我们的方法是最低的RMSE值,则可以进行试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penanganan Imputasi Missing Values pada Data Time Series dengan Menggunakan Metode Data Mining
Pengumpulan data untuk perkiraan cuaca menjadi sangat penting untuk dilakukan untuk meningkatkan kualitas dari perkiraan cuaca tetapi seringkali data yang didapatkan untuk melakukan perkiraan cuaca tersebut terdapat data yang hilang (missing values). Untuk mengatasi permasalahan missing values, metode yang paling umum dilakukan adalah dengan melakukan sebuah imputasi terhadap missing values tersebut. Agar dapat melakukan imputasi pada data yang terdapat missing values tersebut dibutuhkan suatu metode imputasi. Pada penelitian ini, metode imputasi yang dilakukan adalah dengan menggunakan metode konvensional yaitu dengan menggunakan mean dan nilai maksimum dan metode data mining yang menggunakan KNN dan Neural Network. Dari ujicoba yang dilakukan didapatkan jika Metode KNN memiliki nilai RMSE yang terendah.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信