简单复上多项式函数代数的de Rham上同调

Q4 Mathematics
Igor Baskov
{"title":"简单复上多项式函数代数的de Rham上同调","authors":"Igor Baskov","doi":"10.22405/2226-8383-2023-24-1-203-212","DOIUrl":null,"url":null,"abstract":"We consider the algebra $A^0 (X)$ of polynomial functions on a simplicial complex $X$. The algebra $A^0 (X)$ is the $0$th component of Sullivan's dg-algebra $A^\\bullet (X)$ of polynomial forms on $X$. Our main interest lies in computing the de Rham cohomology of the algebra $A^0(X)$, that is, the cohomology of the universal dg-algebra $\\Omega ^\\bullet _{A^0(X)}$. There is a canonical morphism of dg-algebras $P:\\Omega ^\\bullet _{A^0(X)} \\to A^\\bullet (X)$. We prove that $P$ is a quasi-isomorphism. Therefore, the de Rham cohomology of the algebra $A^0 (X)$ is canonically isomorphic to the cohomology of the simplicial complex $X$ with coefficients in $k$. Moreover, for $k=\\mathbb{Q}$ the dg-algebra $\\Omega ^\\bullet _{A^0 (X)}$ is a model of the simplicial complex $X$ in the sense of rational homotopy theory.","PeriodicalId":37492,"journal":{"name":"Chebyshevskii Sbornik","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The de Rham cohomology of the algebra of polynomial functions on a simplicial complex\",\"authors\":\"Igor Baskov\",\"doi\":\"10.22405/2226-8383-2023-24-1-203-212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the algebra $A^0 (X)$ of polynomial functions on a simplicial complex $X$. The algebra $A^0 (X)$ is the $0$th component of Sullivan's dg-algebra $A^\\\\bullet (X)$ of polynomial forms on $X$. Our main interest lies in computing the de Rham cohomology of the algebra $A^0(X)$, that is, the cohomology of the universal dg-algebra $\\\\Omega ^\\\\bullet _{A^0(X)}$. There is a canonical morphism of dg-algebras $P:\\\\Omega ^\\\\bullet _{A^0(X)} \\\\to A^\\\\bullet (X)$. We prove that $P$ is a quasi-isomorphism. Therefore, the de Rham cohomology of the algebra $A^0 (X)$ is canonically isomorphic to the cohomology of the simplicial complex $X$ with coefficients in $k$. Moreover, for $k=\\\\mathbb{Q}$ the dg-algebra $\\\\Omega ^\\\\bullet _{A^0 (X)}$ is a model of the simplicial complex $X$ in the sense of rational homotopy theory.\",\"PeriodicalId\":37492,\"journal\":{\"name\":\"Chebyshevskii Sbornik\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chebyshevskii Sbornik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22405/2226-8383-2023-24-1-203-212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chebyshevskii Sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22405/2226-8383-2023-24-1-203-212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑简单复数X上多项式函数的代数A^0 (X)。代数$A^0 (X)$是在$X$上多项式形式的Sullivan's dg-algebra $A^\bullet (X)$的第0个分量。我们的主要兴趣在于计算代数$A^0(X)$的de Rham上同调,也就是计算泛代数$ Omega ^\bullet _{A^0(X)}$的上同调。g-代数$P:\Omega ^\bullet _{a ^0(X)} \到a ^\bullet (X)$的正则态射。证明$P$是一个拟同构。因此,代数$A^0 (X)$的de Rham上同构与系数在$k$中的单纯复数$X$的上同构。此外,对于$k=\mathbb{Q}$, g-代数$\Omega ^\bullet _{A^0 (X)}$是在有理同伦理论意义上的单纯复$X$的一个模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The de Rham cohomology of the algebra of polynomial functions on a simplicial complex
We consider the algebra $A^0 (X)$ of polynomial functions on a simplicial complex $X$. The algebra $A^0 (X)$ is the $0$th component of Sullivan's dg-algebra $A^\bullet (X)$ of polynomial forms on $X$. Our main interest lies in computing the de Rham cohomology of the algebra $A^0(X)$, that is, the cohomology of the universal dg-algebra $\Omega ^\bullet _{A^0(X)}$. There is a canonical morphism of dg-algebras $P:\Omega ^\bullet _{A^0(X)} \to A^\bullet (X)$. We prove that $P$ is a quasi-isomorphism. Therefore, the de Rham cohomology of the algebra $A^0 (X)$ is canonically isomorphic to the cohomology of the simplicial complex $X$ with coefficients in $k$. Moreover, for $k=\mathbb{Q}$ the dg-algebra $\Omega ^\bullet _{A^0 (X)}$ is a model of the simplicial complex $X$ in the sense of rational homotopy theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chebyshevskii Sbornik
Chebyshevskii Sbornik Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
19
期刊介绍: The aim of the journal is to publish and disseminate research results of leading scientists in many areas of modern mathematics, some areas of physics and computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信