基于卡通特征和快速PCP的运动目标检测与跟踪鲁棒混合技术

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
S. Jeevith, S. Lakshmikanth
{"title":"基于卡通特征和快速PCP的运动目标检测与跟踪鲁棒混合技术","authors":"S. Jeevith, S. Lakshmikanth","doi":"10.18287/2412-6179-co-1056","DOIUrl":null,"url":null,"abstract":"In various computer vision applications, the moving object detection is an essential step. Principal Component Analysis (PCA) techniques are often used for this purpose. However, the performance of this method is degraded by camera shake, hidden moving objects, dynamic background scenes, and / or fluctuating exposure. Robust Principal Component Analysis (RPCA) is a useful approach for reducing stationary background noise as it can recover low rank matrices. That is, moving object is formed by the low power models and the static background of RPCA. This paper proposes a simple alternative minimization algorithm to fix minor discrepancies in the original Principal Component Pursuit (PCP) or RPCA function. A novel hybrid method of cartoon texture features used as a data matrix for RPCA taking into account low-ranking and rare matrix is presented. A new non-convex function is proposed to better control the low-range properties of the video background. Simulation results demonstrate that the proposed algorithm is capable of giving consistent random estimates and can indeed improve the accuracy of object recognition in comparison with existing methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust hybrid technique for moving object detection and tracking using cartoon features and fast PCP\",\"authors\":\"S. Jeevith, S. Lakshmikanth\",\"doi\":\"10.18287/2412-6179-co-1056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In various computer vision applications, the moving object detection is an essential step. Principal Component Analysis (PCA) techniques are often used for this purpose. However, the performance of this method is degraded by camera shake, hidden moving objects, dynamic background scenes, and / or fluctuating exposure. Robust Principal Component Analysis (RPCA) is a useful approach for reducing stationary background noise as it can recover low rank matrices. That is, moving object is formed by the low power models and the static background of RPCA. This paper proposes a simple alternative minimization algorithm to fix minor discrepancies in the original Principal Component Pursuit (PCP) or RPCA function. A novel hybrid method of cartoon texture features used as a data matrix for RPCA taking into account low-ranking and rare matrix is presented. A new non-convex function is proposed to better control the low-range properties of the video background. Simulation results demonstrate that the proposed algorithm is capable of giving consistent random estimates and can indeed improve the accuracy of object recognition in comparison with existing methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/2412-6179-co-1056\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2412-6179-co-1056","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在各种计算机视觉应用中,运动目标检测是必不可少的步骤。主成分分析(PCA)技术通常用于此目的。然而,这种方法的性能会受到相机抖动、隐藏的移动物体、动态背景场景和/或波动曝光的影响。鲁棒主成分分析(RPCA)可以恢复低秩矩阵,是一种有效的消除平稳背景噪声的方法。即由RPCA的低功率模型和静态背景构成运动对象。本文提出了一种简单的替代最小化算法来修复原始主成分追踪(PCP)或RPCA函数中的微小差异。提出了一种考虑低秩矩阵和稀有矩阵的卡通纹理特征作为RPCA数据矩阵的混合方法。为了更好地控制视频背景的低范围特性,提出了一种新的非凸函数。仿真结果表明,该算法能够给出一致的随机估计,与现有方法相比,确实可以提高目标识别的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust hybrid technique for moving object detection and tracking using cartoon features and fast PCP
In various computer vision applications, the moving object detection is an essential step. Principal Component Analysis (PCA) techniques are often used for this purpose. However, the performance of this method is degraded by camera shake, hidden moving objects, dynamic background scenes, and / or fluctuating exposure. Robust Principal Component Analysis (RPCA) is a useful approach for reducing stationary background noise as it can recover low rank matrices. That is, moving object is formed by the low power models and the static background of RPCA. This paper proposes a simple alternative minimization algorithm to fix minor discrepancies in the original Principal Component Pursuit (PCP) or RPCA function. A novel hybrid method of cartoon texture features used as a data matrix for RPCA taking into account low-ranking and rare matrix is presented. A new non-convex function is proposed to better control the low-range properties of the video background. Simulation results demonstrate that the proposed algorithm is capable of giving consistent random estimates and can indeed improve the accuracy of object recognition in comparison with existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信