基于层次动态时间规整的心跳分类与匹配识别

Si Liu, Enqi Zhan, Yang Wang, Jianbin Zheng
{"title":"基于层次动态时间规整的心跳分类与匹配识别","authors":"Si Liu, Enqi Zhan, Yang Wang, Jianbin Zheng","doi":"10.1117/12.2540503","DOIUrl":null,"url":null,"abstract":"Automatic heartbeat classification is an important technique to assist doctors to identify ectopic heartbeats in long-term Holter recording. In this paper, the ECG signal in the MIT-BIH database is filtered first, and then the R-peak detection is performed by the classical method named Pan-Tompkin. The first 100 and the last 150 data points of the R-peak are as chosen as matching signals. Following the recommendation of the Advancement of Medical Instrumentation (AAMI), all the heartbeat samples of MIT-BIH could be grouped into four classes, such as normal or bundle branch block (i.e., class N), supraventricular ectopic (i.e., class S), ventricular ectopic (i.e., class V) and fusion of ventricular and normal (i.e., class F). The division of training and testing data complies with the inter-patient schema. The ECG signals are matched and recognized as specific cardiac diseases using curve fitting and the hierarchical dynamic time warping (DTW) algorithm.Experimental results show that the average classification accuracy of the proposed DTW algorithm is 92.51%, outperforming the other methods. The sensitivities for the classes N, S, V and F are 98.94%, 99.06%, 96.77% and 93.81% respectively, and the corresponding positive predictive values are 93.94%, 91.18%, 88.24% and 96.67%, respectively.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"46 1","pages":"111980J - 111980J-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heart beat classification and matching recognition based on hierarchical dynamic time warping\",\"authors\":\"Si Liu, Enqi Zhan, Yang Wang, Jianbin Zheng\",\"doi\":\"10.1117/12.2540503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic heartbeat classification is an important technique to assist doctors to identify ectopic heartbeats in long-term Holter recording. In this paper, the ECG signal in the MIT-BIH database is filtered first, and then the R-peak detection is performed by the classical method named Pan-Tompkin. The first 100 and the last 150 data points of the R-peak are as chosen as matching signals. Following the recommendation of the Advancement of Medical Instrumentation (AAMI), all the heartbeat samples of MIT-BIH could be grouped into four classes, such as normal or bundle branch block (i.e., class N), supraventricular ectopic (i.e., class S), ventricular ectopic (i.e., class V) and fusion of ventricular and normal (i.e., class F). The division of training and testing data complies with the inter-patient schema. The ECG signals are matched and recognized as specific cardiac diseases using curve fitting and the hierarchical dynamic time warping (DTW) algorithm.Experimental results show that the average classification accuracy of the proposed DTW algorithm is 92.51%, outperforming the other methods. The sensitivities for the classes N, S, V and F are 98.94%, 99.06%, 96.77% and 93.81% respectively, and the corresponding positive predictive values are 93.94%, 91.18%, 88.24% and 96.67%, respectively.\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"46 1\",\"pages\":\"111980J - 111980J-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2540503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2540503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在长期动态心电图记录中,自动心跳分类是帮助医生识别异位心跳的重要技术。本文首先对MIT-BIH数据库中的心电信号进行滤波,然后采用经典的Pan-Tompkin方法进行r峰检测。选取r峰的前100和后150个数据点作为匹配信号。根据美国医学仪器进步(AAMI)的推荐,MIT-BIH的所有心跳样本可分为正常或束状分支阻滞(N类)、室上异位(S类)、心室异位(V类)和心室与正常融合(F类)四类。训练和测试数据的划分符合患者间模式。采用曲线拟合和分层动态时间规整(DTW)算法对心电信号进行匹配和识别。实验结果表明,该算法的平均分类准确率为92.51%,优于其他方法。对N、S、V、F类的敏感性分别为98.94%、99.06%、96.77%、93.81%,阳性预测值分别为93.94%、91.18%、88.24%、96.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heart beat classification and matching recognition based on hierarchical dynamic time warping
Automatic heartbeat classification is an important technique to assist doctors to identify ectopic heartbeats in long-term Holter recording. In this paper, the ECG signal in the MIT-BIH database is filtered first, and then the R-peak detection is performed by the classical method named Pan-Tompkin. The first 100 and the last 150 data points of the R-peak are as chosen as matching signals. Following the recommendation of the Advancement of Medical Instrumentation (AAMI), all the heartbeat samples of MIT-BIH could be grouped into four classes, such as normal or bundle branch block (i.e., class N), supraventricular ectopic (i.e., class S), ventricular ectopic (i.e., class V) and fusion of ventricular and normal (i.e., class F). The division of training and testing data complies with the inter-patient schema. The ECG signals are matched and recognized as specific cardiac diseases using curve fitting and the hierarchical dynamic time warping (DTW) algorithm.Experimental results show that the average classification accuracy of the proposed DTW algorithm is 92.51%, outperforming the other methods. The sensitivities for the classes N, S, V and F are 98.94%, 99.06%, 96.77% and 93.81% respectively, and the corresponding positive predictive values are 93.94%, 91.18%, 88.24% and 96.67%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信