向日葵油中油酸在Amberlyst A21上脱除的动力学、平衡和热力学研究

IF 1.4 4区 工程技术 Q3 ENGINEERING, CHEMICAL
O. Ilgen, Elif Tümkor
{"title":"向日葵油中油酸在Amberlyst A21上脱除的动力学、平衡和热力学研究","authors":"O. Ilgen, Elif Tümkor","doi":"10.3311/ppch.21743","DOIUrl":null,"url":null,"abstract":"Amberlyst A21 was used for the oleic acid adsorption from sunflower oil (SFO). The impacts of parameters such as contact time, temperature, and mass ratio of adsorbent on oleic acid adsorption were studied. The characterization of Amberlyst A21 before and after adsorption was performed by using Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM). The adsorption reached equilibrium 480 minutes later. The increase in temperature and the amount of adsorbent caused an increase in the amount of adsorbed oleic acid. The adsorption kinetics, isotherms, and thermodynamics were studied. The pseudo-first order kinetics well described the adsorption for all studied temperatures. The Langmuir, Freundlich, and Dubinin−Radushkevich isotherms and thermodynamic analysis were investigated at equilibrium. The suitability of the Langmuir and Freundlich isotherms indicated that the adsorption takes place under monolayer and heterogeneous surfaces. Thermodynamical results showed that adsorption occurs spontaneously and endothermic.","PeriodicalId":19922,"journal":{"name":"Periodica Polytechnica Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics, Equilibrium and Thermodynamic Studies on Removal of Oleic Acid from Sunflower Oil onto Amberlyst A21\",\"authors\":\"O. Ilgen, Elif Tümkor\",\"doi\":\"10.3311/ppch.21743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amberlyst A21 was used for the oleic acid adsorption from sunflower oil (SFO). The impacts of parameters such as contact time, temperature, and mass ratio of adsorbent on oleic acid adsorption were studied. The characterization of Amberlyst A21 before and after adsorption was performed by using Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM). The adsorption reached equilibrium 480 minutes later. The increase in temperature and the amount of adsorbent caused an increase in the amount of adsorbed oleic acid. The adsorption kinetics, isotherms, and thermodynamics were studied. The pseudo-first order kinetics well described the adsorption for all studied temperatures. The Langmuir, Freundlich, and Dubinin−Radushkevich isotherms and thermodynamic analysis were investigated at equilibrium. The suitability of the Langmuir and Freundlich isotherms indicated that the adsorption takes place under monolayer and heterogeneous surfaces. Thermodynamical results showed that adsorption occurs spontaneously and endothermic.\",\"PeriodicalId\":19922,\"journal\":{\"name\":\"Periodica Polytechnica Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppch.21743\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppch.21743","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用Amberlyst A21对葵花籽油中的油酸进行吸附。研究了接触时间、温度、吸附剂质量比等参数对油酸吸附的影响。采用傅里叶变换红外光谱仪(FTIR)和扫描电镜(SEM)对吸附前后的Amberlyst A21进行了表征。480分钟后吸附达到平衡。温度的升高和吸附剂用量的增加导致吸附油酸的量增加。研究了吸附动力学、等温线和热力学。准一级动力学很好地描述了在所有研究温度下的吸附。研究了平衡态下的Langmuir、Freundlich和Dubinin - Radushkevich等温线和热力学分析。Langmuir等温线和Freundlich等温线的适用性表明,吸附发生在单层和非均质表面。热力学结果表明,吸附是自发的吸热吸附。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinetics, Equilibrium and Thermodynamic Studies on Removal of Oleic Acid from Sunflower Oil onto Amberlyst A21
Amberlyst A21 was used for the oleic acid adsorption from sunflower oil (SFO). The impacts of parameters such as contact time, temperature, and mass ratio of adsorbent on oleic acid adsorption were studied. The characterization of Amberlyst A21 before and after adsorption was performed by using Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM). The adsorption reached equilibrium 480 minutes later. The increase in temperature and the amount of adsorbent caused an increase in the amount of adsorbed oleic acid. The adsorption kinetics, isotherms, and thermodynamics were studied. The pseudo-first order kinetics well described the adsorption for all studied temperatures. The Langmuir, Freundlich, and Dubinin−Radushkevich isotherms and thermodynamic analysis were investigated at equilibrium. The suitability of the Langmuir and Freundlich isotherms indicated that the adsorption takes place under monolayer and heterogeneous surfaces. Thermodynamical results showed that adsorption occurs spontaneously and endothermic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
7.70%
发文量
44
审稿时长
>12 weeks
期刊介绍: The main scope of the journal is to publish original research articles in the wide field of chemical engineering including environmental and bioengineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信