{"title":"含摩擦接触的准静态界面损伤模型——在钢筋混凝土结构中的应用","authors":"R. Vodička, Filip Kšiňan","doi":"10.2495/CMEM-V6-N6-1043-1056","DOIUrl":null,"url":null,"abstract":"A model for numerical analysis of compound structures made of various materials is presented. The mathematical concept of solution is based on quasi-static evolution of debonding processes occurring along the interface. It is formulated in terms of energies considering the stored energy represented by the elastic energy of the structures and dissipation due to damage processes, plastic slip at the interface or friction. The numerical solution includes a semi-implicit time stepping procedure, relying on splitting of the whole problem at a current time step into two problems of variational nature solved recursively. The space discretisation includes Symmetric Galerkin Boundary Element Method used to obtain the stored energies, and, in combination with the variational character of the recursive problems, also to calculate its gradients to be utilized in non-linear programming algorithms for finding the timeevolving solution. Numerical results are demonstrated for a steel-concrete interface frequently met in civil engineering applications to assess the model applicability in engineering practice.","PeriodicalId":22520,"journal":{"name":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","volume":"63 1","pages":"1043-1056"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A quasi-static interface damage model with frictional contact – applications to steel reinforced concrete structures\",\"authors\":\"R. Vodička, Filip Kšiňan\",\"doi\":\"10.2495/CMEM-V6-N6-1043-1056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model for numerical analysis of compound structures made of various materials is presented. The mathematical concept of solution is based on quasi-static evolution of debonding processes occurring along the interface. It is formulated in terms of energies considering the stored energy represented by the elastic energy of the structures and dissipation due to damage processes, plastic slip at the interface or friction. The numerical solution includes a semi-implicit time stepping procedure, relying on splitting of the whole problem at a current time step into two problems of variational nature solved recursively. The space discretisation includes Symmetric Galerkin Boundary Element Method used to obtain the stored energies, and, in combination with the variational character of the recursive problems, also to calculate its gradients to be utilized in non-linear programming algorithms for finding the timeevolving solution. Numerical results are demonstrated for a steel-concrete interface frequently met in civil engineering applications to assess the model applicability in engineering practice.\",\"PeriodicalId\":22520,\"journal\":{\"name\":\"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS\",\"volume\":\"63 1\",\"pages\":\"1043-1056\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/CMEM-V6-N6-1043-1056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS AND EXPERIMENTAL MEASUREMENTS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/CMEM-V6-N6-1043-1056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A quasi-static interface damage model with frictional contact – applications to steel reinforced concrete structures
A model for numerical analysis of compound structures made of various materials is presented. The mathematical concept of solution is based on quasi-static evolution of debonding processes occurring along the interface. It is formulated in terms of energies considering the stored energy represented by the elastic energy of the structures and dissipation due to damage processes, plastic slip at the interface or friction. The numerical solution includes a semi-implicit time stepping procedure, relying on splitting of the whole problem at a current time step into two problems of variational nature solved recursively. The space discretisation includes Symmetric Galerkin Boundary Element Method used to obtain the stored energies, and, in combination with the variational character of the recursive problems, also to calculate its gradients to be utilized in non-linear programming algorithms for finding the timeevolving solution. Numerical results are demonstrated for a steel-concrete interface frequently met in civil engineering applications to assess the model applicability in engineering practice.