育种毯系统电磁子建模方法研究

IF 0.5 Q4 NUCLEAR SCIENCE & TECHNOLOGY
I. Maione, M. Roccella, Flavio Lucca
{"title":"育种毯系统电磁子建模方法研究","authors":"I. Maione, M. Roccella, Flavio Lucca","doi":"10.3390/jne4010013","DOIUrl":null,"url":null,"abstract":"The outcome of the electromagnetic (EM) analyses carried out during the DEMO pre-conceptual phase demonstrated that EM loads are relevant for the structural assessment of the breeding blanket (BB) and, in particular, for the definition of the boundary conditions at the attachment system with the vacuum vessel. However, within the scope of the previous campaign, the results obtained using simplified models only give a rough estimation of the EM loads inside the BB structure. This kind of data has been considered suitable for a preliminary assessment of the BB segments, but it is not considered representative as input for structural analysis in which a detailed BB internal structure (that considers cooling channels, thin plates, etc.) is analyzed. Indeed, mesh dimensions and computational time usually limit EM models that simulate a whole DEMO sector. In many cases, these constraints lead to a strong homogenization of the BB structure, not allowing the calculation of the EM loads on the internal structure with high precision. To overcome such limitations, an EM sub-modeling procedure was investigated using ANSYS EMAG. The sub-modeling feasibility is studied using the rigid boundary condition method. This method consists of running a global “coarse” mesh, including all the conducting structures that can have some impact on the component under investigation and inputting the obtained results on the detailed sub-model of the structure of interest as time-varying boundary conditions. The procedure was tested on the BB internal structure, taking as reference a DEMO 2017 baseline sector and the helium cooled pebble bed (HCPB) concept with its complex internal structure made by pins. The obtained results show that the method is also reliable in the presence of non-linear magnetic behaviour. The methodology is proposed for application in future BB system assessments.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":"41 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Electromagnetic Sub-Modeling Procedure for the Breeding Blanket System\",\"authors\":\"I. Maione, M. Roccella, Flavio Lucca\",\"doi\":\"10.3390/jne4010013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The outcome of the electromagnetic (EM) analyses carried out during the DEMO pre-conceptual phase demonstrated that EM loads are relevant for the structural assessment of the breeding blanket (BB) and, in particular, for the definition of the boundary conditions at the attachment system with the vacuum vessel. However, within the scope of the previous campaign, the results obtained using simplified models only give a rough estimation of the EM loads inside the BB structure. This kind of data has been considered suitable for a preliminary assessment of the BB segments, but it is not considered representative as input for structural analysis in which a detailed BB internal structure (that considers cooling channels, thin plates, etc.) is analyzed. Indeed, mesh dimensions and computational time usually limit EM models that simulate a whole DEMO sector. In many cases, these constraints lead to a strong homogenization of the BB structure, not allowing the calculation of the EM loads on the internal structure with high precision. To overcome such limitations, an EM sub-modeling procedure was investigated using ANSYS EMAG. The sub-modeling feasibility is studied using the rigid boundary condition method. This method consists of running a global “coarse” mesh, including all the conducting structures that can have some impact on the component under investigation and inputting the obtained results on the detailed sub-model of the structure of interest as time-varying boundary conditions. The procedure was tested on the BB internal structure, taking as reference a DEMO 2017 baseline sector and the helium cooled pebble bed (HCPB) concept with its complex internal structure made by pins. The obtained results show that the method is also reliable in the presence of non-linear magnetic behaviour. The methodology is proposed for application in future BB system assessments.\",\"PeriodicalId\":16756,\"journal\":{\"name\":\"Journal of Nuclear Engineering and Radiation Science\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nuclear Engineering and Radiation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jne4010013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Engineering and Radiation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jne4010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在DEMO概念前阶段进行的电磁(EM)分析结果表明,电磁载荷与繁殖毯(BB)的结构评估有关,特别是与真空容器连接系统的边界条件的定义有关。然而,在之前的活动范围内,使用简化模型获得的结果仅给出了BB结构内部电磁载荷的粗略估计。这种数据被认为适合于对BB段的初步评估,但作为结构分析的输入,它不具有代表性,在结构分析中,详细的BB内部结构(考虑冷却通道,薄板等)被分析。实际上,网格尺寸和计算时间通常会限制模拟整个DEMO扇区的EM模型。在许多情况下,这些约束导致BB结构的强均匀化,无法高精度地计算内部结构上的电磁载荷。为了克服这些限制,利用ANSYS EMAG研究了电磁子建模过程。采用刚性边界条件法研究了子模型的可行性。该方法包括运行一个全局“粗”网格,包括所有可能对被研究部件产生一定影响的导电结构,并将获得的结果作为时变边界条件输入到感兴趣结构的详细子模型上。该程序在BB内部结构上进行了测试,参考了DEMO 2017基线扇区和氦气冷却球床(HCPB)概念,其内部结构由针制成。结果表明,该方法在存在非线性磁行为的情况下也是可靠的。提出了该方法在未来BB系统评估中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of Electromagnetic Sub-Modeling Procedure for the Breeding Blanket System
The outcome of the electromagnetic (EM) analyses carried out during the DEMO pre-conceptual phase demonstrated that EM loads are relevant for the structural assessment of the breeding blanket (BB) and, in particular, for the definition of the boundary conditions at the attachment system with the vacuum vessel. However, within the scope of the previous campaign, the results obtained using simplified models only give a rough estimation of the EM loads inside the BB structure. This kind of data has been considered suitable for a preliminary assessment of the BB segments, but it is not considered representative as input for structural analysis in which a detailed BB internal structure (that considers cooling channels, thin plates, etc.) is analyzed. Indeed, mesh dimensions and computational time usually limit EM models that simulate a whole DEMO sector. In many cases, these constraints lead to a strong homogenization of the BB structure, not allowing the calculation of the EM loads on the internal structure with high precision. To overcome such limitations, an EM sub-modeling procedure was investigated using ANSYS EMAG. The sub-modeling feasibility is studied using the rigid boundary condition method. This method consists of running a global “coarse” mesh, including all the conducting structures that can have some impact on the component under investigation and inputting the obtained results on the detailed sub-model of the structure of interest as time-varying boundary conditions. The procedure was tested on the BB internal structure, taking as reference a DEMO 2017 baseline sector and the helium cooled pebble bed (HCPB) concept with its complex internal structure made by pins. The obtained results show that the method is also reliable in the presence of non-linear magnetic behaviour. The methodology is proposed for application in future BB system assessments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
56
期刊介绍: The Journal of Nuclear Engineering and Radiation Science is ASME’s latest title within the energy sector. The publication is for specialists in the nuclear/power engineering areas of industry, academia, and government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信