Mi Wenbo, Li Qi, Liang Junhong, Zhou Jingyun, Cheng Xiaoli
{"title":"火星返回舱上凸起物的热环境与气动加热机理","authors":"Mi Wenbo, Li Qi, Liang Junhong, Zhou Jingyun, Cheng Xiaoli","doi":"10.34133/2021/9754068","DOIUrl":null,"url":null,"abstract":"Mars has only thin atmosphere composed mainly of carbon dioxide that differs significantly from the atmosphere of Earth in terms of characteristics of reentry flows. To connect with the orbiter, the Mars entry capsule is provided with titanium pipes and other units installed on the heat-shield. These units will create significant local interaction flow on the surface of the capsule and cause additional heating on the surface of the shield during the entry of the capsule. With a view to interaction thermal environment issues for the surface of the shield, in this paper, the characteristics of protrusion interaction flow on different location of the shield were studied by means of numerical simulation. Heating mechanisms of protuberances on different location were derived by analyzing characteristic parameters such as local flow velocity, pressure, and Mach number. The results show that the interaction thermal environment of protuberances in the windward area is smaller than that of protuberances in the leeward area, mainly because subsonic flow dominates in the windward area, and the interaction is weak, while in the leeward area, the direction of flow intersects with protuberances to form a boundary layer shear flow, which results in a stronger interaction before the protuberances.","PeriodicalId":44234,"journal":{"name":"中国空间科学技术","volume":"17 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Thermal Environment and Aeroheating Mechanism of Protuberances on Mars Entry Capsule\",\"authors\":\"Mi Wenbo, Li Qi, Liang Junhong, Zhou Jingyun, Cheng Xiaoli\",\"doi\":\"10.34133/2021/9754068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mars has only thin atmosphere composed mainly of carbon dioxide that differs significantly from the atmosphere of Earth in terms of characteristics of reentry flows. To connect with the orbiter, the Mars entry capsule is provided with titanium pipes and other units installed on the heat-shield. These units will create significant local interaction flow on the surface of the capsule and cause additional heating on the surface of the shield during the entry of the capsule. With a view to interaction thermal environment issues for the surface of the shield, in this paper, the characteristics of protrusion interaction flow on different location of the shield were studied by means of numerical simulation. Heating mechanisms of protuberances on different location were derived by analyzing characteristic parameters such as local flow velocity, pressure, and Mach number. The results show that the interaction thermal environment of protuberances in the windward area is smaller than that of protuberances in the leeward area, mainly because subsonic flow dominates in the windward area, and the interaction is weak, while in the leeward area, the direction of flow intersects with protuberances to form a boundary layer shear flow, which results in a stronger interaction before the protuberances.\",\"PeriodicalId\":44234,\"journal\":{\"name\":\"中国空间科学技术\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国空间科学技术\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.34133/2021/9754068\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国空间科学技术","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34133/2021/9754068","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Thermal Environment and Aeroheating Mechanism of Protuberances on Mars Entry Capsule
Mars has only thin atmosphere composed mainly of carbon dioxide that differs significantly from the atmosphere of Earth in terms of characteristics of reentry flows. To connect with the orbiter, the Mars entry capsule is provided with titanium pipes and other units installed on the heat-shield. These units will create significant local interaction flow on the surface of the capsule and cause additional heating on the surface of the shield during the entry of the capsule. With a view to interaction thermal environment issues for the surface of the shield, in this paper, the characteristics of protrusion interaction flow on different location of the shield were studied by means of numerical simulation. Heating mechanisms of protuberances on different location were derived by analyzing characteristic parameters such as local flow velocity, pressure, and Mach number. The results show that the interaction thermal environment of protuberances in the windward area is smaller than that of protuberances in the leeward area, mainly because subsonic flow dominates in the windward area, and the interaction is weak, while in the leeward area, the direction of flow intersects with protuberances to form a boundary layer shear flow, which results in a stronger interaction before the protuberances.
期刊介绍:
"China Space Science and Technology" is sponsored by the China Academy of Space Technology. It is an academic and technical journal that comprehensively and systematically reflects China's spacecraft engineering technology. The purpose of this journal is to "exchange scientific research results, explore cutting-edge technologies, activate academic research, promote talent growth, and serve the space industry", and strive to make "China Space Science and Technology" a first-class academic and technical journal in China.
This journal follows the principle of "let a hundred flowers bloom and a hundred schools of thought contend", promotes academic democracy, and actively carries out academic discussions, making this journal an important platform for Chinese space science and technology personnel to publish research results, conduct academic exchanges, and explore cutting-edge technologies; it has become an important window for promoting and displaying China's academic achievements in space technology.