HP-Mapper:用于Docker容器的高性能存储驱动程序

Fan Guo, Yongkun Li, Min Lv, Yinlong Xu, John C.S. Lui
{"title":"HP-Mapper:用于Docker容器的高性能存储驱动程序","authors":"Fan Guo, Yongkun Li, Min Lv, Yinlong Xu, John C.S. Lui","doi":"10.1145/3357223.3362718","DOIUrl":null,"url":null,"abstract":"Docker containers are widely deployed to provide lightweight virtualization, and they have many desirable features such as ease of deployment and near bare-metal performance. However, both the performance and cache efficiency of containers are still limited by their storage drivers due to the coarse-grained copy-on-write operations, and the large amount of redundancy in both I/O requests and page cache. To improve I/O performance and cache efficiency of containers, we develop HP-Mapper, a high performance storage driver for Docker containers. HP-Mapper provides a two-level mapping strategy to support fine-grained copy-on-write with low overhead, and an efficient interception method to reduce redundant I/Os. Furthermore, it uses a novel cache management mechanism to reduce duplicate cached data. Experiment results with our prototype system show that HP-Mapper significantly reduces copy-on-write latency due to its finer-grained copy-on-write scheme. Moreover, HP-Mapper can also reduce 65.4% cache usage on average due to elimination of duplicated data. As a result, HP-Mapper improves the throughput of real-world workloads by up to 39.4%, and improves the startup speed of containers by 2.0x.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"HP-Mapper: A High Performance Storage Driver for Docker Containers\",\"authors\":\"Fan Guo, Yongkun Li, Min Lv, Yinlong Xu, John C.S. Lui\",\"doi\":\"10.1145/3357223.3362718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Docker containers are widely deployed to provide lightweight virtualization, and they have many desirable features such as ease of deployment and near bare-metal performance. However, both the performance and cache efficiency of containers are still limited by their storage drivers due to the coarse-grained copy-on-write operations, and the large amount of redundancy in both I/O requests and page cache. To improve I/O performance and cache efficiency of containers, we develop HP-Mapper, a high performance storage driver for Docker containers. HP-Mapper provides a two-level mapping strategy to support fine-grained copy-on-write with low overhead, and an efficient interception method to reduce redundant I/Os. Furthermore, it uses a novel cache management mechanism to reduce duplicate cached data. Experiment results with our prototype system show that HP-Mapper significantly reduces copy-on-write latency due to its finer-grained copy-on-write scheme. Moreover, HP-Mapper can also reduce 65.4% cache usage on average due to elimination of duplicated data. As a result, HP-Mapper improves the throughput of real-world workloads by up to 39.4%, and improves the startup speed of containers by 2.0x.\",\"PeriodicalId\":91949,\"journal\":{\"name\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357223.3362718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

Docker容器被广泛部署以提供轻量级虚拟化,并且它们具有许多理想的特性,例如易于部署和接近裸机的性能。然而,由于粗粒度的写时复制操作,以及I/O请求和页面缓存中的大量冗余,容器的性能和缓存效率仍然受到存储驱动程序的限制。为了提高容器的I/O性能和缓存效率,我们开发了用于Docker容器的高性能存储驱动HP-Mapper。HP-Mapper提供了一个两级映射策略,以低开销支持细粒度的写时复制,并提供了一个有效的拦截方法来减少冗余I/ o。此外,它还使用了一种新的缓存管理机制来减少重复的缓存数据。我们的原型系统的实验结果表明,HP-Mapper由于其细粒度的写时复制方案而显着降低了写时复制延迟。此外,由于消除了重复数据,HP-Mapper还可以平均减少65.4%的缓存使用。因此,HP-Mapper将实际工作负载的吞吐量提高了39.4%,并将容器的启动速度提高了2.0倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HP-Mapper: A High Performance Storage Driver for Docker Containers
Docker containers are widely deployed to provide lightweight virtualization, and they have many desirable features such as ease of deployment and near bare-metal performance. However, both the performance and cache efficiency of containers are still limited by their storage drivers due to the coarse-grained copy-on-write operations, and the large amount of redundancy in both I/O requests and page cache. To improve I/O performance and cache efficiency of containers, we develop HP-Mapper, a high performance storage driver for Docker containers. HP-Mapper provides a two-level mapping strategy to support fine-grained copy-on-write with low overhead, and an efficient interception method to reduce redundant I/Os. Furthermore, it uses a novel cache management mechanism to reduce duplicate cached data. Experiment results with our prototype system show that HP-Mapper significantly reduces copy-on-write latency due to its finer-grained copy-on-write scheme. Moreover, HP-Mapper can also reduce 65.4% cache usage on average due to elimination of duplicated data. As a result, HP-Mapper improves the throughput of real-world workloads by up to 39.4%, and improves the startup speed of containers by 2.0x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信