使用卷积神经网络的视觉里程计

Alex Graves, Steffen Lim, T. Fagan, K. McFall
{"title":"使用卷积神经网络的视觉里程计","authors":"Alex Graves, Steffen Lim, T. Fagan, K. McFall","doi":"10.32727/25.2019.25","DOIUrl":null,"url":null,"abstract":"Visual odometry is the process of tracking an agent’s motion over time using a visual sensor. The visual odometry problem has only been recently solved using traditional, non-machine-learning techniques. Despite the success of neural networks at many related problems such as object recognition, feature detection, and optical flow, visual odometry still has not been solved with a deep learning technique. This paper attempts to implement several Convolutional Neural Networks to solve the visual odometry problem and compare slight variations in data preprocessing. The work presented is a step toward reaching a legitimate neural network solution.","PeriodicalId":22986,"journal":{"name":"The Journal of Undergraduate Research","volume":"59 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Visual Odometry using Convolutional Neural Networks\",\"authors\":\"Alex Graves, Steffen Lim, T. Fagan, K. McFall\",\"doi\":\"10.32727/25.2019.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual odometry is the process of tracking an agent’s motion over time using a visual sensor. The visual odometry problem has only been recently solved using traditional, non-machine-learning techniques. Despite the success of neural networks at many related problems such as object recognition, feature detection, and optical flow, visual odometry still has not been solved with a deep learning technique. This paper attempts to implement several Convolutional Neural Networks to solve the visual odometry problem and compare slight variations in data preprocessing. The work presented is a step toward reaching a legitimate neural network solution.\",\"PeriodicalId\":22986,\"journal\":{\"name\":\"The Journal of Undergraduate Research\",\"volume\":\"59 1\",\"pages\":\"5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Undergraduate Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32727/25.2019.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Undergraduate Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32727/25.2019.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

视觉里程计是使用视觉传感器跟踪代理随时间的运动的过程。视觉里程计问题直到最近才通过传统的非机器学习技术得到解决。尽管神经网络在许多相关问题上取得了成功,如物体识别、特征检测和光流,但视觉里程计仍然没有用深度学习技术来解决。本文试图实现几个卷积神经网络来解决视觉里程计问题,并比较数据预处理的细微变化。提出的工作是朝着实现合法的神经网络解决方案迈出的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Odometry using Convolutional Neural Networks
Visual odometry is the process of tracking an agent’s motion over time using a visual sensor. The visual odometry problem has only been recently solved using traditional, non-machine-learning techniques. Despite the success of neural networks at many related problems such as object recognition, feature detection, and optical flow, visual odometry still has not been solved with a deep learning technique. This paper attempts to implement several Convolutional Neural Networks to solve the visual odometry problem and compare slight variations in data preprocessing. The work presented is a step toward reaching a legitimate neural network solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信