基于简单实验数据,用数值方法建立了生物柴油酯交换s曲线模型

M. Sofyan, M. E. Hafizah, A. Manaf
{"title":"基于简单实验数据,用数值方法建立了生物柴油酯交换s曲线模型","authors":"M. Sofyan, M. E. Hafizah, A. Manaf","doi":"10.1063/5.0061169","DOIUrl":null,"url":null,"abstract":"An experiment related to biodiesel transesterification was successfully done. The chemical reaction of transesterification was conducted at 65 °C during 14 h of reaction time involving the ratio of methanol and used cooking oil was 70 : 1. An additional catalyst is required upon 10 % of HPA (Heteropoly Acid) as an organic catalyst. The maximum conversion (yield) was achieved by 88.68 % with activation energy (Ea) was 53.99 kJ/mole with Pre-Exponential Factor (A) was obtained 2.9 x 107. Based on those experiments, s-curve modeling was designed. The s-curve was generated through three different selected temperature reactions as follows: 60, 65, and 70 °C (333, 338, and 343 K) with various reaction times 0.5, 1.0, and 2 h respectively. The mechanism to build the s-curve model through three stages starting by determination of reaction rate constant (k’) through linear regression equation continued with the curve formation between ln k’ with 1/T to produce a value of Ea and A. To produce the s-curve model was observed through numerical processes, interpreted and analyzed by applying the Avrami equation to determine reaction and temperature time is required by trans esterification reaction between methanol and used cooking oil. Referring to the curve was obtained several results which are the optimum temperature to obtain the best yield, time to obtain a 100 % yield, and time to obtain a determining yield. According to the s-curve model was formed, the time reaction 46.95 h and 22.79 h is able to achieve 100 % and 96.5 % of yield product by plotting reaction of temperature and time. This simulation can be applied to other biodiesel reaction which has different raw materials and types of a catalyst by keeping the same method to be applied through the transesterification method.","PeriodicalId":20561,"journal":{"name":"PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020)","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The s-curve model of biodiesel transesterification by numerical methods based on brief experimental data\",\"authors\":\"M. Sofyan, M. E. Hafizah, A. Manaf\",\"doi\":\"10.1063/5.0061169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experiment related to biodiesel transesterification was successfully done. The chemical reaction of transesterification was conducted at 65 °C during 14 h of reaction time involving the ratio of methanol and used cooking oil was 70 : 1. An additional catalyst is required upon 10 % of HPA (Heteropoly Acid) as an organic catalyst. The maximum conversion (yield) was achieved by 88.68 % with activation energy (Ea) was 53.99 kJ/mole with Pre-Exponential Factor (A) was obtained 2.9 x 107. Based on those experiments, s-curve modeling was designed. The s-curve was generated through three different selected temperature reactions as follows: 60, 65, and 70 °C (333, 338, and 343 K) with various reaction times 0.5, 1.0, and 2 h respectively. The mechanism to build the s-curve model through three stages starting by determination of reaction rate constant (k’) through linear regression equation continued with the curve formation between ln k’ with 1/T to produce a value of Ea and A. To produce the s-curve model was observed through numerical processes, interpreted and analyzed by applying the Avrami equation to determine reaction and temperature time is required by trans esterification reaction between methanol and used cooking oil. Referring to the curve was obtained several results which are the optimum temperature to obtain the best yield, time to obtain a 100 % yield, and time to obtain a determining yield. According to the s-curve model was formed, the time reaction 46.95 h and 22.79 h is able to achieve 100 % and 96.5 % of yield product by plotting reaction of temperature and time. This simulation can be applied to other biodiesel reaction which has different raw materials and types of a catalyst by keeping the same method to be applied through the transesterification method.\",\"PeriodicalId\":20561,\"journal\":{\"name\":\"PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020)\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0061169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2020 (ISCPMS 2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0061169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

成功地进行了生物柴油酯交换实验。在65℃下,甲醇与废食用油的比例为70:1,反应时间为14 h,进行酯交换化学反应。在10%杂多酸(HPA)作为有机催化剂时,需要额外的催化剂。反应的最大转化率为88.68%,活化能(Ea)为53.99 kJ/mol,指前因子(A)为2.9 × 107。在此基础上,设计了s曲线模型。在60、65、70℃(333、338、343 K)下,反应时间分别为0.5、1.0、2 h,得到s曲线。建立s曲线模型的机理分为三个阶段,从线性回归方程确定反应速率常数k′开始,再到ln k′与1/T之间形成曲线,得到Ea和a的值。建立s曲线模型通过数值过程观察,并应用Avrami方程确定甲醇与废食用油反式酯化反应所需的反应和温度时间进行解释和分析。根据曲线得出了获得最佳收率的最佳温度、获得100%收率的时间和获得确定收率的时间。根据建立的s曲线模型,通过绘制反应温度和反应时间,反应时间分别为46.95 h和22.79 h,产率分别为100%和96.5%。该模拟可以应用于其他具有不同原料和催化剂类型的生物柴油反应,通过保持相同的方法,通过酯交换法应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The s-curve model of biodiesel transesterification by numerical methods based on brief experimental data
An experiment related to biodiesel transesterification was successfully done. The chemical reaction of transesterification was conducted at 65 °C during 14 h of reaction time involving the ratio of methanol and used cooking oil was 70 : 1. An additional catalyst is required upon 10 % of HPA (Heteropoly Acid) as an organic catalyst. The maximum conversion (yield) was achieved by 88.68 % with activation energy (Ea) was 53.99 kJ/mole with Pre-Exponential Factor (A) was obtained 2.9 x 107. Based on those experiments, s-curve modeling was designed. The s-curve was generated through three different selected temperature reactions as follows: 60, 65, and 70 °C (333, 338, and 343 K) with various reaction times 0.5, 1.0, and 2 h respectively. The mechanism to build the s-curve model through three stages starting by determination of reaction rate constant (k’) through linear regression equation continued with the curve formation between ln k’ with 1/T to produce a value of Ea and A. To produce the s-curve model was observed through numerical processes, interpreted and analyzed by applying the Avrami equation to determine reaction and temperature time is required by trans esterification reaction between methanol and used cooking oil. Referring to the curve was obtained several results which are the optimum temperature to obtain the best yield, time to obtain a 100 % yield, and time to obtain a determining yield. According to the s-curve model was formed, the time reaction 46.95 h and 22.79 h is able to achieve 100 % and 96.5 % of yield product by plotting reaction of temperature and time. This simulation can be applied to other biodiesel reaction which has different raw materials and types of a catalyst by keeping the same method to be applied through the transesterification method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信