{"title":"安培法和电化学石英晶体微天平法用于钒液流电池充电状态监测的可行性研究","authors":"C. Weidlich, Felix Lulay, Matthias Wieland","doi":"10.5599/jese.1699","DOIUrl":null,"url":null,"abstract":"For an efficient flow battery operation, knowledge of the state of charge of the battery is essential. Monitoring the state of charge of both half cells is advantageous concerning a timely detection of crossover processes. We present the first results for amperometric and electrochemical quartz crystal microbalance measurements in a vanadium flow battery test setup. By validating with half cell potential measurements as well as ex situ titration we investigate the applicability of both electrochemical methods for an in situ half cell state of charge monitoring.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"58 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility study of amperometric and electrochemical quartz crystal microbalance measurements for in situ state of charge monitoring in vanadium flow batteries\",\"authors\":\"C. Weidlich, Felix Lulay, Matthias Wieland\",\"doi\":\"10.5599/jese.1699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an efficient flow battery operation, knowledge of the state of charge of the battery is essential. Monitoring the state of charge of both half cells is advantageous concerning a timely detection of crossover processes. We present the first results for amperometric and electrochemical quartz crystal microbalance measurements in a vanadium flow battery test setup. By validating with half cell potential measurements as well as ex situ titration we investigate the applicability of both electrochemical methods for an in situ half cell state of charge monitoring.\",\"PeriodicalId\":15660,\"journal\":{\"name\":\"Journal of Electrochemical Science and Engineering\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/jese.1699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Feasibility study of amperometric and electrochemical quartz crystal microbalance measurements for in situ state of charge monitoring in vanadium flow batteries
For an efficient flow battery operation, knowledge of the state of charge of the battery is essential. Monitoring the state of charge of both half cells is advantageous concerning a timely detection of crossover processes. We present the first results for amperometric and electrochemical quartz crystal microbalance measurements in a vanadium flow battery test setup. By validating with half cell potential measurements as well as ex situ titration we investigate the applicability of both electrochemical methods for an in situ half cell state of charge monitoring.