一类具有表面能耗散的边值问题的谱性质

IF 0.5 Q3 MATHEMATICS
O. A. Andronova, V. I. Voititskii
{"title":"一类具有表面能耗散的边值问题的谱性质","authors":"O. A. Andronova, V. I. Voititskii","doi":"10.13108/2017-9-2-3","DOIUrl":null,"url":null,"abstract":"We study a spectral problem in a bounded domain Ω ⊂ Rm depending on a bounded operator coefficient Q > 0 and a dissipation parameter α > 0. In the general case we establish sufficient conditions ensuring that the problem has a discrete spectrum consisting of countably many isolated eigenvalues of finite multiplicity accumulating at infinity. We also establish the conditions, under which the system of root elements contains an Abel-Lidskii basis in the space L2(Ω). In model oneand two-dimensional problems we establish the localization of the eigenvalues and find critical values of α.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"152 1","pages":"3-16"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On spectral properties of one boundary value problem with a surface energy dissipation\",\"authors\":\"O. A. Andronova, V. I. Voititskii\",\"doi\":\"10.13108/2017-9-2-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a spectral problem in a bounded domain Ω ⊂ Rm depending on a bounded operator coefficient Q > 0 and a dissipation parameter α > 0. In the general case we establish sufficient conditions ensuring that the problem has a discrete spectrum consisting of countably many isolated eigenvalues of finite multiplicity accumulating at infinity. We also establish the conditions, under which the system of root elements contains an Abel-Lidskii basis in the space L2(Ω). In model oneand two-dimensional problems we establish the localization of the eigenvalues and find critical values of α.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"152 1\",\"pages\":\"3-16\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-2-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-2-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们研究有界域Ω∧Rm中的谱问题,该问题依赖于有界算子系数Q > 0和耗散参数α > 0。在一般情况下,我们建立了保证问题具有一个离散谱的充分条件,该谱是由在无穷远处积累的有限多重的可数孤立特征值组成的。我们还建立了根元素系统在空间L2(Ω)中包含一个Abel-Lidskii基的条件。在模型一和二维问题中,我们建立了特征值的局部化,并找到了α的临界值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On spectral properties of one boundary value problem with a surface energy dissipation
We study a spectral problem in a bounded domain Ω ⊂ Rm depending on a bounded operator coefficient Q > 0 and a dissipation parameter α > 0. In the general case we establish sufficient conditions ensuring that the problem has a discrete spectrum consisting of countably many isolated eigenvalues of finite multiplicity accumulating at infinity. We also establish the conditions, under which the system of root elements contains an Abel-Lidskii basis in the space L2(Ω). In model oneand two-dimensional problems we establish the localization of the eigenvalues and find critical values of α.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信