基于cnn的拷贝检测模式估计与认证模型

Syukron Abu, Ishaq Alfarozi, A. R. Pratama
{"title":"基于cnn的拷贝检测模式估计与认证模型","authors":"Syukron Abu, Ishaq Alfarozi, A. R. Pratama","doi":"10.22146/jnteti.v12i1.6205","DOIUrl":null,"url":null,"abstract":"Counterfeiting has been one of the crimes of the 21st century. One of the methods to overcome product counterfeiting is a copy detection pattern (CDP) stamped on the product. CDP is a copy-sensitive pattern that leads to quality degradation of the pattern after the print and scan process. The amount of information loss is used to distinguish between original and fake CDPs. This paper proposed a CDP estimation model based on the convolutional neural network (CNN), namely, CDP-CNN. The CDP-CNN addresses the spatial dependency of the image patch. Thus, it should be better than the state-of-the-art model that uses a multi-layer perceptron (MLP) architecture. The proposed model had an estimation bit error rate (BER) of 9.91% on the batch estimation method. The error rate was 9% lower than the previous method that used an autoencoder MLP model. The proposed model also had a lower number of parameters compared to the previous method. The effect of preprocessing, namely the use of an unsharp mask, was tested using a statistical testing method. The effect of preprocessing had no significant difference except in the batch estimation scheme where the unsharp mask filter reduced the error rate by at least 0.5%. In addition, the proposed model was also used for the authentication method. The authentication using the estimation model had a good separation distribution to distinguish the fake and original CDPs. Thus, the CDP can still be used as the authentication method with reliable performance. It helps anti-counterfeiting on product distribution and reduces negative impacts on various sectors of the economy.","PeriodicalId":31477,"journal":{"name":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CNN-Based Model for Copy Detection Pattern Estimation and Authentication\",\"authors\":\"Syukron Abu, Ishaq Alfarozi, A. R. Pratama\",\"doi\":\"10.22146/jnteti.v12i1.6205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Counterfeiting has been one of the crimes of the 21st century. One of the methods to overcome product counterfeiting is a copy detection pattern (CDP) stamped on the product. CDP is a copy-sensitive pattern that leads to quality degradation of the pattern after the print and scan process. The amount of information loss is used to distinguish between original and fake CDPs. This paper proposed a CDP estimation model based on the convolutional neural network (CNN), namely, CDP-CNN. The CDP-CNN addresses the spatial dependency of the image patch. Thus, it should be better than the state-of-the-art model that uses a multi-layer perceptron (MLP) architecture. The proposed model had an estimation bit error rate (BER) of 9.91% on the batch estimation method. The error rate was 9% lower than the previous method that used an autoencoder MLP model. The proposed model also had a lower number of parameters compared to the previous method. The effect of preprocessing, namely the use of an unsharp mask, was tested using a statistical testing method. The effect of preprocessing had no significant difference except in the batch estimation scheme where the unsharp mask filter reduced the error rate by at least 0.5%. In addition, the proposed model was also used for the authentication method. The authentication using the estimation model had a good separation distribution to distinguish the fake and original CDPs. Thus, the CDP can still be used as the authentication method with reliable performance. It helps anti-counterfeiting on product distribution and reduces negative impacts on various sectors of the economy.\",\"PeriodicalId\":31477,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro dan Teknologi Informasi\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro dan Teknologi Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/jnteti.v12i1.6205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jnteti.v12i1.6205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

假冒伪劣已经成为21世纪的犯罪之一。克服产品假冒的方法之一是在产品上印制副本检测图案(CDP)。CDP是一种复制敏感型图案,在打印和扫描过程中会导致图案质量下降。信息丢失的数量是用来区分真假cdp的。本文提出了一种基于卷积神经网络(CNN)的CDP估计模型,即CDP-CNN。CDP-CNN解决了图像patch的空间依赖性。因此,它应该比使用多层感知器(MLP)架构的最先进的模型更好。在批估计方法下,该模型的误码率为9.91%。误差率比先前使用自编码器MLP模型的方法低9%。与之前的方法相比,该模型的参数数量也更少。采用统计检验方法检验预处理的效果,即使用不锐利的掩模。预处理的效果没有显著差异,除了在批估计方案中,不锐利的掩膜滤波器将错误率降低了至少0.5%。此外,该模型还用于认证方法。利用估计模型进行的认证具有良好的分离分布,可以区分真假cdp。因此,CDP仍然可以作为性能可靠的认证方式。它有助于产品分销的防伪,并减少对经济各个部门的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN-Based Model for Copy Detection Pattern Estimation and Authentication
Counterfeiting has been one of the crimes of the 21st century. One of the methods to overcome product counterfeiting is a copy detection pattern (CDP) stamped on the product. CDP is a copy-sensitive pattern that leads to quality degradation of the pattern after the print and scan process. The amount of information loss is used to distinguish between original and fake CDPs. This paper proposed a CDP estimation model based on the convolutional neural network (CNN), namely, CDP-CNN. The CDP-CNN addresses the spatial dependency of the image patch. Thus, it should be better than the state-of-the-art model that uses a multi-layer perceptron (MLP) architecture. The proposed model had an estimation bit error rate (BER) of 9.91% on the batch estimation method. The error rate was 9% lower than the previous method that used an autoencoder MLP model. The proposed model also had a lower number of parameters compared to the previous method. The effect of preprocessing, namely the use of an unsharp mask, was tested using a statistical testing method. The effect of preprocessing had no significant difference except in the batch estimation scheme where the unsharp mask filter reduced the error rate by at least 0.5%. In addition, the proposed model was also used for the authentication method. The authentication using the estimation model had a good separation distribution to distinguish the fake and original CDPs. Thus, the CDP can still be used as the authentication method with reliable performance. It helps anti-counterfeiting on product distribution and reduces negative impacts on various sectors of the economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信